Cementitious Coatings for Concrete Surfaces: Effects of Curing Conditions on Performance Measure

Article Preview

Abstract:

To increase cohesiveness, toughness, impermeability, and adhesion strength in cementitious materials like mortars and concrete, vinyl acetate ethylene (VAE) copolymer redispersible powder (RDP) is used. However, due to numerous variety of material, choosing an original performing RDP is challenging. The goal of this study is to assess the bond strength to concrete surfaces of various redispersible polymer-modified cementitious coatings under various accelerated settings. The outcomes showed that the RDP backbone composition has a significant influence on the coatings' adhesion strength. Methyl methacrylate (MMA) and Vinyl chloride (VC) present as comonomers in RDP exhibit outstanding thermal stability and boost tensile adhesion strength by 41% and 21%, respectively, in comparison to other RDPs. According to SEM studies, the VC- RDP stimulates the formation of fibrous ettringite, producing a uniform and cohesive microstructure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

187-199

Citation:

Online since:

January 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Fan, L. Niu, Performance of redispersible polymer powders in wall coatings, J. Adhes. Sci. Technol. 29 (2015) 296–307.

Google Scholar

[2] M. Bin Mobarak, M.S. Hossain, M. Mahmud, S. Ahmed, Redispersible polymer powder modified cementitious tile adhesive as an alternative to ordinary cement-sand grout, Heliyon. 7 (2021) e08411.

DOI: 10.1016/j.heliyon.2021.e08411

Google Scholar

[3] J. Michalak, Ceramic Tile Adhesives from the Producer's Perspective: A Literature Review, Ceramics. 4 (2021) 378–390.

DOI: 10.3390/ceramics4030027

Google Scholar

[4] L.M. Saija, M. Uminski, Water-redispersible low-Tg acrylic powders for the modification of hydraulic binder compositions, J. Appl. Polym. Sci. 71 (1999) 1781–1787.

DOI: 10.1002/(sici)1097-4628(19990314)71:11<1781::aid-app7>3.0.co;2-2

Google Scholar

[5] Ersen, P. Lorenzo, Altinok, Redispersible polymer powder compositions with improved impact resistance, (2017).

Google Scholar

[6] N. Tarannum, K. Pooja, R. Khan, Preparation and applications of hydrophobic multicomponent based redispersible polymer powder: A review, Constr. Build. Mater. 247 (2020) 118579.

DOI: 10.1016/j.conbuildmat.2020.118579

Google Scholar

[7] J. Cui, The influence of redispersible powder on mechanical properties of Eps light-aggregate concrete, in: Appl. Mech. Mater., Trans Tech Publications Ltd, (2014) p.173–176.

DOI: 10.4028/www.scientific.net/amm.651-653.173

Google Scholar

[8] J. Schulze, O. Killermann, Long-term performance of redispersible powders in mortars, Cem. Concr. Res. 31 (2001) 357–362.

DOI: 10.1016/s0008-8846(00)00498-1

Google Scholar

[9] A.F. Routh, W.B. Russel, A Process Model for Latex Film Formation: Limiting Regimes for Individual Driving Forces, Langmuir. 15 (1999) 7762–7773.

DOI: 10.1021/la9903090

Google Scholar

[10] Ł. Kotwica, J. Malołepszy, Polymer-cement and polymer-alite interactions in hardening of cement-polymer composites, Cem. Wapno, Bet. (2012) 12–16.

Google Scholar

[11] R. Wang, J. Li, T. Zhang, L. Czarnecki, Chemical interaction between polymer and cement in polymer-cement concrete, Bull. Polish Acad. Sci. Tech. Sci. 64 (2016) 785–792.

DOI: 10.1515/bpasts-2016-0087

Google Scholar

[12] G. Zhao, P. Wang, G. Zhang, Principles of polymer film in tile adhesive mortars at early ages, Mater. Res. Express. 6 (2019).

DOI: 10.1088/2053-1591/aaf2a2

Google Scholar

[13] A. Jenni, L. Holzer, R. Zurbriggen, M. Herwegh, Influence of polymers on microstructure and adhesive strength of cementitious tile adhesive mortars, Cem. Concr. Res. 35 (2005) 35–50.

DOI: 10.1016/j.cemconres.2004.06.039

Google Scholar

[14] A. Wetzel, R. Zurbriggen, M. Herwegh, Spatially Resolved Evolution Of Adhesion Properties Of Large Porcelain Tiles, Cem. Concr. Compos. 32 (2010) 327–338.

DOI: 10.1016/j.cemconcomp.2010.02.002

Google Scholar

[15] S. Liu, Y. Kong, T. Wan, G. Zhao, Effects of thermal-cooling cycling curing on the mechanical properties of EVA-modified concrete, Constr. Build. Mater. 165 (2018) 443–450.

DOI: 10.1016/j.conbuildmat.2018.01.060

Google Scholar

[16] F. Winnefeld, J. Kaufmann, E. Hack, S. Harzer, A. Wetzel, R. Zurbriggen, Moisture induced length changes of tile adhesive mortars and their impact on adhesion strength, Constr. Build. Mater. 30 (2012) 426–438.

DOI: 10.1016/j.conbuildmat.2011.12.023

Google Scholar

[17] A.M. Betioli, J. Hoppe Filho, M.A. Cincotto, P.J.P. Gleize, R.G. Pileggi, Chemical Interaction Between EVA And Portland Cement Hydration At Early-Age, Constr. Build. Mater. 23 (2009) 3332–3336.

DOI: 10.1016/j.conbuildmat.2009.06.033

Google Scholar

[18] A.A.P. Mansur, O.L. do Nascimento, H.S. Mansur, Physico-Chemical Characterization Of EVA-Modified Mortar And Porcelain Tiles Interfaces, Cem. Concr. Res. 39 (2009) 1199–1208.

DOI: 10.1016/j.cemconres.2009.07.020

Google Scholar

[19] H. Zhu, P. Wang, G. Zhang, Influence Of Vinyl Acetate/Ethylene Copolymer Powder On Secondary Efflorescence In Portland Cement-Based Decorative Mortar, J. Zhejiang Univ. A. 16 (2015) 143–150.

DOI: 10.1631/jzus.a1300403

Google Scholar

[20] H. Zhang, Z. Yang, Y. Su, Hydration Kinetics Of Cement-Quicklime System At Different Temperatures, Thermochim. Acta. 673 (2019) 1–11.

DOI: 10.1016/j.tca.2019.01.002

Google Scholar

[21] S. Martínez-Ramírez, M. Frías, The Effect Of Curing Temperature On White Cement Hydration, Constr. Build. Mater. 23 (2009) 1344–1348.

DOI: 10.1016/j.conbuildmat.2008.07.012

Google Scholar

[22] I.I. Rudenko, O.P. Konstantynovskyi, A. V. Kovalchuk, M. V. Nikolainko, D. V. Obremsky, Efficiency of Redispersible Polymer Powders in Mortars for Anchoring Application Based on Alkali Activated Portland Cements, Key Eng. Mater. 761 (2018) 27–30.

DOI: 10.4028/www.scientific.net/kem.761.27

Google Scholar

[23] B.B. Konar, T.K. Pariya, Study of Polymer-Cement Composite Containing Portland Cement and Aqueous Poly (methyl methacrylate) Latex Polymer by Fourier-Transform Infrared (FT-IR) Spectroscopy, J. Macromol. Sci. Part A. 46 (2009) 802–806.

DOI: 10.1080/10601320903004616

Google Scholar

[24] T.Y. Chang, H.L. Stephens, R.C. Yen, Polymer Concrete Prepared From an Mma-Styrene Copolymer System., Transp. Res. Rec. (1975) 50–59.

Google Scholar

[25] J. V. Brien, K.C. Mahboub, Influence of polymer type on adhesion performance of a blended cement mortar, Int. J. Adhes. Adhes. 43 (2013) 7–13.

DOI: 10.1016/j.ijadhadh.2013.01.007

Google Scholar

[26] R. Wang, P.-M. Wang, Action of redispersible vinyl acetate and versatate copolymer powder in cement mortar, Constr. Build. Mater. 25 (2011) 4210–4214.

DOI: 10.1016/j.conbuildmat.2011.04.060

Google Scholar

[27] D. Zhao, F. Wang, P. Liu, S. Hu, C. Hu, L. Yang, Enhanced mechanical properties of polymer-modified cementitious materials via organosilane fly ash hybrid–polyvinyl pyrrolidone crosslink network, Constr. Build. Mater. 330 (2022) 127119.

DOI: 10.1016/j.conbuildmat.2022.127119

Google Scholar

[28] S. Lee, S.Y. Jang, C.Y. Kim, E.J. Ahn, S.P. Kim, S. Gwon, M. Shin, Effects Of Redispersible Polymer Powder On Mechanical And Durability Properties Of Preplaced Aggregate Concrete With Recycled Railway Ballast, Int. J. Concr. Struct. Mater. 12 (2018).

DOI: 10.1186/s40069-018-0304-1

Google Scholar

[29] R. Douglas Hooton, Future Directions For Design, Specification, Testing, And Construction Of Durable Concrete Structures, Cem. Concr. Res. 124 (2019) 105827.

DOI: 10.1016/j.cemconres.2019.105827

Google Scholar

[30] Y. Zhang, R. Xiao, X. Jiang, W. Li, X. Zhu, B. Huang, Effect Of Particle Size And Curing Temperature On Mechanical And Microstructural Properties Of Waste Glass-Slag-Based And Waste Glass-Fly Ash-Based Geopolymers, J. Clean. Prod. 273 (2020).

DOI: 10.1016/j.jclepro.2020.122970

Google Scholar

[31] K. Zhao, P. Zhang, S. Xue, S. Han, H.S. Müller, Y. Xiao, Y. Hu, L. Hao, L. Mei, Q. Li, Quasi-Elastic Neutron Scattering (QENS) And Its Application For Investigating The Hydration Of Cement-Based Materials: State-Of-The-Art, Mater. Charact. 172 (2021) 110890.

DOI: 10.1016/j.matchar.2021.110890

Google Scholar

[32] C. Pichler, M. Schmid, R. Traxl, R. Lackner, Influence Of Curing Temperature Dependent Microstructure On Early-Age Concrete Strength Development, Cem. Concr. Res. 102 (2017) 48–59.

DOI: 10.1016/j.cemconres.2017.08.022

Google Scholar

[33] G. Barluenga, C. Guardia, J. Puentes, Effect Of Curing Temperature And Relative Humidity On Early Age And Hardened Properties Of SCC, Constr. Build. Mater. 167 (2018) 235–242.

DOI: 10.1016/j.conbuildmat.2018.02.029

Google Scholar

[34] K.G. Chitte, R.G. Puri, D.S. Mahajan, S. Rathi, J.S. Narkhede, SBR-latex modified cementitious composite coatings for concrete rehabilitation and assessment of performance measure, Eur. J. Environ. Civ. Eng. 0 (2021) 1–18.

DOI: 10.1080/19648189.2021.2018048

Google Scholar

[35] D.A. Silva, H.R. Roman, P.J.P. Gleize, Evidences of chemical interaction between EVA and hydrating Portland cement, Cem. Concr. Res. 32 (2002) 1383–1390.

DOI: 10.1016/s0008-8846(02)00805-0

Google Scholar

[36] O.Y. Yansaneh, S.H. Zein, Recent Advances on Waste Plastic Thermal Pyrolysis: A Critical Overview, Processes. 10 (2022).

DOI: 10.3390/pr10020332

Google Scholar

[37] S.S. Choi, E. Kim, Analysis of pyrolysis products of ethylene-vinyl acetate coploymer (EVA) using pre-deacetylation, J. Anal. Appl. Pyrolysis. 127 (2017) 1–7.

DOI: 10.1016/j.jaap.2017.09.015

Google Scholar

[38] W. Mahmood, A. Mohammed, K. Ghafor, Viscosity, Yield Stress And Compressive Strength Of Cement-Based Grout Modified With Polymers, Results Mater. 4 (2019) 100043.

DOI: 10.1016/j.rinma.2019.100043

Google Scholar

[39] N.K. Ilango, P. Gujar, A.K. Nagesh, A. Alex, P. Ghosh, Interfacial adhesion mechanism between organic polymer coating and hydrating cement paste, Cem. Concr. Compos. 115 (2021) 103856.

DOI: 10.1016/j.cemconcomp.2020.103856

Google Scholar

[40] H. Li, D. Ni, G. Liang, Y. Guo, B. Dong, Mechanical performance and microstructure of cement paste/mortar modified by VAEC dispersible powder cured under different temperatures, Constr. Build. Mater. 278 (2021) 122446.

DOI: 10.1016/j.conbuildmat.2021.122446

Google Scholar

[41] C.E.M. Gomes, O.P. Ferreira, M.R. Fernandes, Influence of vinyl acetate-versatic vinylester copolymer on the microstructural characteristics of cement pastes, Mater.Res. 8 (2005)51-56.

DOI: 10.1590/s1516-14392005000100010

Google Scholar

[42] G. Liang, D. Ni, H. Li, B. Dong, Z. Yang, Synergistic effect of EVA, TEA and C-S-Hs-PCE on the hydration process and mechanical properties of Portland cement paste at early age, Constr. Build. Mater. 272 (2021) 121891.

DOI: 10.1016/j.conbuildmat.2020.121891

Google Scholar

[43] L.N. Butler, C.M. Fellows, R.G. Gilbert, Effect of surfactant systems on the water sensitivity of latex films, J. Appl. Polym. Sci. 92 (2004) 1813–1823.

DOI: 10.1002/app.20150

Google Scholar

[44] A. Jenni, R. Zurbriggen, L. Holzer, M. Herwegh, Changes in microstructures and physical properties of polymer-modified mortars during wet storage, Cem. Concr.Res. 36 (2006) 79-90.

DOI: 10.1016/j.cemconres.2005.06.001

Google Scholar

[45] K. Rashid, Y. Wang, T. Ueda, Influence of continuous and cyclic temperature durations on the performance of polymer cement mortar and its composite with concrete, Compos. Struct. 215 (2019) 214–225.

DOI: 10.1016/j.compstruct.2019.02.057

Google Scholar

[46] J.J. Assaad, Development and use of polymer-modified cement for adhesive and repair applications, Constr. Build. Mater. 163 (2018) 139–148.

DOI: 10.1016/j.conbuildmat.2017.12.103

Google Scholar

[47] M. Ramli, A.A. Tabassi, K.W. Hoe, Porosity, pore structure and water absorption of polymer-modified mortars: An experimental study under different curing conditions, Compos. Part B Eng. 55 (2013) 221–233.

DOI: 10.1016/j.compositesb.2013.06.022

Google Scholar

[48] D. Jansen, D. Ectors, X. Kong, C. Schmidtke, F. Deschner, J. Pakusch, E. Jahns, J. Neubauer, Synchronous Monitoring of Cement Hydration and Polymer Film Formation Using 1 H-Time-Domain-NMR with T 2 Time-Weighted T 1 Time Evaluation: A Nondestructive Practicable Benchtop Method, ACS Omega. 6 (2021) 7499–7511.

DOI: 10.1021/acsomega.0c06010

Google Scholar

[49] Z. Zhang, J. Du, M. Shi, Quantitative Analysis of the Calcium Hydroxide Content of EVA-Modified Cement Paste Based on TG-DSC in a Dual Atmosphere, Materials (Basel). 15 (2022) 2660.

DOI: 10.3390/ma15072660

Google Scholar

[50] Y.K. Jo, Adhesion in tension of polymer cement mortar by curing conditions using polymer dispersions as cement modifier, Constr. Build. Mater. 242 (2020) 118134.

DOI: 10.1016/j.conbuildmat.2020.118134

Google Scholar