[1]
X. Fan, L. Niu, Performance of redispersible polymer powders in wall coatings, J. Adhes. Sci. Technol. 29 (2015) 296–307.
Google Scholar
[2]
M. Bin Mobarak, M.S. Hossain, M. Mahmud, S. Ahmed, Redispersible polymer powder modified cementitious tile adhesive as an alternative to ordinary cement-sand grout, Heliyon. 7 (2021) e08411.
DOI: 10.1016/j.heliyon.2021.e08411
Google Scholar
[3]
J. Michalak, Ceramic Tile Adhesives from the Producer's Perspective: A Literature Review, Ceramics. 4 (2021) 378–390.
DOI: 10.3390/ceramics4030027
Google Scholar
[4]
L.M. Saija, M. Uminski, Water-redispersible low-Tg acrylic powders for the modification of hydraulic binder compositions, J. Appl. Polym. Sci. 71 (1999) 1781–1787.
DOI: 10.1002/(sici)1097-4628(19990314)71:11<1781::aid-app7>3.0.co;2-2
Google Scholar
[5]
Ersen, P. Lorenzo, Altinok, Redispersible polymer powder compositions with improved impact resistance, (2017).
Google Scholar
[6]
N. Tarannum, K. Pooja, R. Khan, Preparation and applications of hydrophobic multicomponent based redispersible polymer powder: A review, Constr. Build. Mater. 247 (2020) 118579.
DOI: 10.1016/j.conbuildmat.2020.118579
Google Scholar
[7]
J. Cui, The influence of redispersible powder on mechanical properties of Eps light-aggregate concrete, in: Appl. Mech. Mater., Trans Tech Publications Ltd, (2014) p.173–176.
DOI: 10.4028/www.scientific.net/amm.651-653.173
Google Scholar
[8]
J. Schulze, O. Killermann, Long-term performance of redispersible powders in mortars, Cem. Concr. Res. 31 (2001) 357–362.
DOI: 10.1016/s0008-8846(00)00498-1
Google Scholar
[9]
A.F. Routh, W.B. Russel, A Process Model for Latex Film Formation: Limiting Regimes for Individual Driving Forces, Langmuir. 15 (1999) 7762–7773.
DOI: 10.1021/la9903090
Google Scholar
[10]
Ł. Kotwica, J. Malołepszy, Polymer-cement and polymer-alite interactions in hardening of cement-polymer composites, Cem. Wapno, Bet. (2012) 12–16.
Google Scholar
[11]
R. Wang, J. Li, T. Zhang, L. Czarnecki, Chemical interaction between polymer and cement in polymer-cement concrete, Bull. Polish Acad. Sci. Tech. Sci. 64 (2016) 785–792.
DOI: 10.1515/bpasts-2016-0087
Google Scholar
[12]
G. Zhao, P. Wang, G. Zhang, Principles of polymer film in tile adhesive mortars at early ages, Mater. Res. Express. 6 (2019).
DOI: 10.1088/2053-1591/aaf2a2
Google Scholar
[13]
A. Jenni, L. Holzer, R. Zurbriggen, M. Herwegh, Influence of polymers on microstructure and adhesive strength of cementitious tile adhesive mortars, Cem. Concr. Res. 35 (2005) 35–50.
DOI: 10.1016/j.cemconres.2004.06.039
Google Scholar
[14]
A. Wetzel, R. Zurbriggen, M. Herwegh, Spatially Resolved Evolution Of Adhesion Properties Of Large Porcelain Tiles, Cem. Concr. Compos. 32 (2010) 327–338.
DOI: 10.1016/j.cemconcomp.2010.02.002
Google Scholar
[15]
S. Liu, Y. Kong, T. Wan, G. Zhao, Effects of thermal-cooling cycling curing on the mechanical properties of EVA-modified concrete, Constr. Build. Mater. 165 (2018) 443–450.
DOI: 10.1016/j.conbuildmat.2018.01.060
Google Scholar
[16]
F. Winnefeld, J. Kaufmann, E. Hack, S. Harzer, A. Wetzel, R. Zurbriggen, Moisture induced length changes of tile adhesive mortars and their impact on adhesion strength, Constr. Build. Mater. 30 (2012) 426–438.
DOI: 10.1016/j.conbuildmat.2011.12.023
Google Scholar
[17]
A.M. Betioli, J. Hoppe Filho, M.A. Cincotto, P.J.P. Gleize, R.G. Pileggi, Chemical Interaction Between EVA And Portland Cement Hydration At Early-Age, Constr. Build. Mater. 23 (2009) 3332–3336.
DOI: 10.1016/j.conbuildmat.2009.06.033
Google Scholar
[18]
A.A.P. Mansur, O.L. do Nascimento, H.S. Mansur, Physico-Chemical Characterization Of EVA-Modified Mortar And Porcelain Tiles Interfaces, Cem. Concr. Res. 39 (2009) 1199–1208.
DOI: 10.1016/j.cemconres.2009.07.020
Google Scholar
[19]
H. Zhu, P. Wang, G. Zhang, Influence Of Vinyl Acetate/Ethylene Copolymer Powder On Secondary Efflorescence In Portland Cement-Based Decorative Mortar, J. Zhejiang Univ. A. 16 (2015) 143–150.
DOI: 10.1631/jzus.a1300403
Google Scholar
[20]
H. Zhang, Z. Yang, Y. Su, Hydration Kinetics Of Cement-Quicklime System At Different Temperatures, Thermochim. Acta. 673 (2019) 1–11.
DOI: 10.1016/j.tca.2019.01.002
Google Scholar
[21]
S. Martínez-Ramírez, M. Frías, The Effect Of Curing Temperature On White Cement Hydration, Constr. Build. Mater. 23 (2009) 1344–1348.
DOI: 10.1016/j.conbuildmat.2008.07.012
Google Scholar
[22]
I.I. Rudenko, O.P. Konstantynovskyi, A. V. Kovalchuk, M. V. Nikolainko, D. V. Obremsky, Efficiency of Redispersible Polymer Powders in Mortars for Anchoring Application Based on Alkali Activated Portland Cements, Key Eng. Mater. 761 (2018) 27–30.
DOI: 10.4028/www.scientific.net/kem.761.27
Google Scholar
[23]
B.B. Konar, T.K. Pariya, Study of Polymer-Cement Composite Containing Portland Cement and Aqueous Poly (methyl methacrylate) Latex Polymer by Fourier-Transform Infrared (FT-IR) Spectroscopy, J. Macromol. Sci. Part A. 46 (2009) 802–806.
DOI: 10.1080/10601320903004616
Google Scholar
[24]
T.Y. Chang, H.L. Stephens, R.C. Yen, Polymer Concrete Prepared From an Mma-Styrene Copolymer System., Transp. Res. Rec. (1975) 50–59.
Google Scholar
[25]
J. V. Brien, K.C. Mahboub, Influence of polymer type on adhesion performance of a blended cement mortar, Int. J. Adhes. Adhes. 43 (2013) 7–13.
DOI: 10.1016/j.ijadhadh.2013.01.007
Google Scholar
[26]
R. Wang, P.-M. Wang, Action of redispersible vinyl acetate and versatate copolymer powder in cement mortar, Constr. Build. Mater. 25 (2011) 4210–4214.
DOI: 10.1016/j.conbuildmat.2011.04.060
Google Scholar
[27]
D. Zhao, F. Wang, P. Liu, S. Hu, C. Hu, L. Yang, Enhanced mechanical properties of polymer-modified cementitious materials via organosilane fly ash hybrid–polyvinyl pyrrolidone crosslink network, Constr. Build. Mater. 330 (2022) 127119.
DOI: 10.1016/j.conbuildmat.2022.127119
Google Scholar
[28]
S. Lee, S.Y. Jang, C.Y. Kim, E.J. Ahn, S.P. Kim, S. Gwon, M. Shin, Effects Of Redispersible Polymer Powder On Mechanical And Durability Properties Of Preplaced Aggregate Concrete With Recycled Railway Ballast, Int. J. Concr. Struct. Mater. 12 (2018).
DOI: 10.1186/s40069-018-0304-1
Google Scholar
[29]
R. Douglas Hooton, Future Directions For Design, Specification, Testing, And Construction Of Durable Concrete Structures, Cem. Concr. Res. 124 (2019) 105827.
DOI: 10.1016/j.cemconres.2019.105827
Google Scholar
[30]
Y. Zhang, R. Xiao, X. Jiang, W. Li, X. Zhu, B. Huang, Effect Of Particle Size And Curing Temperature On Mechanical And Microstructural Properties Of Waste Glass-Slag-Based And Waste Glass-Fly Ash-Based Geopolymers, J. Clean. Prod. 273 (2020).
DOI: 10.1016/j.jclepro.2020.122970
Google Scholar
[31]
K. Zhao, P. Zhang, S. Xue, S. Han, H.S. Müller, Y. Xiao, Y. Hu, L. Hao, L. Mei, Q. Li, Quasi-Elastic Neutron Scattering (QENS) And Its Application For Investigating The Hydration Of Cement-Based Materials: State-Of-The-Art, Mater. Charact. 172 (2021) 110890.
DOI: 10.1016/j.matchar.2021.110890
Google Scholar
[32]
C. Pichler, M. Schmid, R. Traxl, R. Lackner, Influence Of Curing Temperature Dependent Microstructure On Early-Age Concrete Strength Development, Cem. Concr. Res. 102 (2017) 48–59.
DOI: 10.1016/j.cemconres.2017.08.022
Google Scholar
[33]
G. Barluenga, C. Guardia, J. Puentes, Effect Of Curing Temperature And Relative Humidity On Early Age And Hardened Properties Of SCC, Constr. Build. Mater. 167 (2018) 235–242.
DOI: 10.1016/j.conbuildmat.2018.02.029
Google Scholar
[34]
K.G. Chitte, R.G. Puri, D.S. Mahajan, S. Rathi, J.S. Narkhede, SBR-latex modified cementitious composite coatings for concrete rehabilitation and assessment of performance measure, Eur. J. Environ. Civ. Eng. 0 (2021) 1–18.
DOI: 10.1080/19648189.2021.2018048
Google Scholar
[35]
D.A. Silva, H.R. Roman, P.J.P. Gleize, Evidences of chemical interaction between EVA and hydrating Portland cement, Cem. Concr. Res. 32 (2002) 1383–1390.
DOI: 10.1016/s0008-8846(02)00805-0
Google Scholar
[36]
O.Y. Yansaneh, S.H. Zein, Recent Advances on Waste Plastic Thermal Pyrolysis: A Critical Overview, Processes. 10 (2022).
DOI: 10.3390/pr10020332
Google Scholar
[37]
S.S. Choi, E. Kim, Analysis of pyrolysis products of ethylene-vinyl acetate coploymer (EVA) using pre-deacetylation, J. Anal. Appl. Pyrolysis. 127 (2017) 1–7.
DOI: 10.1016/j.jaap.2017.09.015
Google Scholar
[38]
W. Mahmood, A. Mohammed, K. Ghafor, Viscosity, Yield Stress And Compressive Strength Of Cement-Based Grout Modified With Polymers, Results Mater. 4 (2019) 100043.
DOI: 10.1016/j.rinma.2019.100043
Google Scholar
[39]
N.K. Ilango, P. Gujar, A.K. Nagesh, A. Alex, P. Ghosh, Interfacial adhesion mechanism between organic polymer coating and hydrating cement paste, Cem. Concr. Compos. 115 (2021) 103856.
DOI: 10.1016/j.cemconcomp.2020.103856
Google Scholar
[40]
H. Li, D. Ni, G. Liang, Y. Guo, B. Dong, Mechanical performance and microstructure of cement paste/mortar modified by VAEC dispersible powder cured under different temperatures, Constr. Build. Mater. 278 (2021) 122446.
DOI: 10.1016/j.conbuildmat.2021.122446
Google Scholar
[41]
C.E.M. Gomes, O.P. Ferreira, M.R. Fernandes, Influence of vinyl acetate-versatic vinylester copolymer on the microstructural characteristics of cement pastes, Mater.Res. 8 (2005)51-56.
DOI: 10.1590/s1516-14392005000100010
Google Scholar
[42]
G. Liang, D. Ni, H. Li, B. Dong, Z. Yang, Synergistic effect of EVA, TEA and C-S-Hs-PCE on the hydration process and mechanical properties of Portland cement paste at early age, Constr. Build. Mater. 272 (2021) 121891.
DOI: 10.1016/j.conbuildmat.2020.121891
Google Scholar
[43]
L.N. Butler, C.M. Fellows, R.G. Gilbert, Effect of surfactant systems on the water sensitivity of latex films, J. Appl. Polym. Sci. 92 (2004) 1813–1823.
DOI: 10.1002/app.20150
Google Scholar
[44]
A. Jenni, R. Zurbriggen, L. Holzer, M. Herwegh, Changes in microstructures and physical properties of polymer-modified mortars during wet storage, Cem. Concr.Res. 36 (2006) 79-90.
DOI: 10.1016/j.cemconres.2005.06.001
Google Scholar
[45]
K. Rashid, Y. Wang, T. Ueda, Influence of continuous and cyclic temperature durations on the performance of polymer cement mortar and its composite with concrete, Compos. Struct. 215 (2019) 214–225.
DOI: 10.1016/j.compstruct.2019.02.057
Google Scholar
[46]
J.J. Assaad, Development and use of polymer-modified cement for adhesive and repair applications, Constr. Build. Mater. 163 (2018) 139–148.
DOI: 10.1016/j.conbuildmat.2017.12.103
Google Scholar
[47]
M. Ramli, A.A. Tabassi, K.W. Hoe, Porosity, pore structure and water absorption of polymer-modified mortars: An experimental study under different curing conditions, Compos. Part B Eng. 55 (2013) 221–233.
DOI: 10.1016/j.compositesb.2013.06.022
Google Scholar
[48]
D. Jansen, D. Ectors, X. Kong, C. Schmidtke, F. Deschner, J. Pakusch, E. Jahns, J. Neubauer, Synchronous Monitoring of Cement Hydration and Polymer Film Formation Using 1 H-Time-Domain-NMR with T 2 Time-Weighted T 1 Time Evaluation: A Nondestructive Practicable Benchtop Method, ACS Omega. 6 (2021) 7499–7511.
DOI: 10.1021/acsomega.0c06010
Google Scholar
[49]
Z. Zhang, J. Du, M. Shi, Quantitative Analysis of the Calcium Hydroxide Content of EVA-Modified Cement Paste Based on TG-DSC in a Dual Atmosphere, Materials (Basel). 15 (2022) 2660.
DOI: 10.3390/ma15072660
Google Scholar
[50]
Y.K. Jo, Adhesion in tension of polymer cement mortar by curing conditions using polymer dispersions as cement modifier, Constr. Build. Mater. 242 (2020) 118134.
DOI: 10.1016/j.conbuildmat.2020.118134
Google Scholar