Review of Multiaxial Fatigue Life Prediction Technology under Complex Loading

Article Preview

Abstract:

The research on multiaxial fatigue life prediction methods is reviewed in the present paper from two aspects of experiment and theory. It is pointed out that the reasonable methods of the critical plane determining, multiaxial cycle counting and multiaxial fatigue damage parameter fixing are necessary if the fatigue life prediction models established under the multiaxial constant amplitude loading were applied to the life prediction of the complex multiaxial load. The shortcomings of existing researches are discussed. In the aspect of experiment, it is devoid of the multiaxial fatigue test that the loading components acted with different frequencies, and in the aspect of theory, the additional hardening effect of the multiaxial out-of-frequency loading is not considered. Both in the theoretical research and practical engineering applications, the problem of the out-of-frequency multiaxial loading is a pressing issue.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 118-120)

Pages:

283-288

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Carpinteri, A. Spagnoli and S. Vantadori: Int. J. Fatigue Vol. 31 (2009), p.188.

Google Scholar

[2] J. Li, Z.P. Zhang, Q. Sun, C.W. Li and Y.J. Qiao: Int. J. Fatigue Vol. 31 (2009), p.776.

Google Scholar

[3] A. Cristofori, L. Susmel and R. Tovo: Int. J. Fatigue Vol. 30 (2008), p.1646.

Google Scholar

[4] Y.L. Lee, T. Tjhung and A. Jordan: Int. J. Fatigue Vol. 29 (2007), p.1162.

Google Scholar

[5] A. Ahmadi and H. Zenner: Int. J. Fatigue Vol. 28 (2006), p.954.

Google Scholar

[6] M. Kueppers and C.M. Sonsino: Int. J. Fatigue Vol. 28 (2006), pp.540-546.

Google Scholar

[7] A. Bernasconi, M. Filippini, S. Foletti and D. Vaudo: Int. J. Fatigue Vol. 28 (2006), p.663.

Google Scholar

[8] X. Chen, D. Jin and K.S. Kim: Int. J. Fatigue Vol. 28 (2006), p.289.

Google Scholar

[9] A.G. Camilla, A.A. Jose and N.M. Edgar: Int. J. Fatigue Vol. 27 (2005), p.177.

Google Scholar

[10] A. Carpinteri and A. Spagnoli: Int. J. Fatigue Vol. 23 (2001), p.135.

Google Scholar

[11] A. Spagnoli: Int. J. Mechanical Sciences Vol. 43 (2001), p.2581.

Google Scholar

[12] K.C. Liu and J. A. Wang: Int. J. Fatigue Vol. 23 (2001), p.129.

Google Scholar

[13] J.F. Bonnen, F.A. Conle and T.H. Topper: Int. J. Fatigue Vol. 23 (2001), p.385.

Google Scholar

[14] A. Varvani-Farahani: Int. J. Fatigue Vol. 22 (2000), p.295.

Google Scholar

[15] J. Ziebs, J. Meersmann, H.J. Kuhn, et al, in: Multiaxial Fatigue and Design, ESIS 21, Mechanical Engineering Publications, London (1996), p.173.

Google Scholar

[16] M.S. Found, U.S. Fernando and K.J. Miller, in: Multiaxial Fatigue, ASTM, Philadelphia (1985), p.11.

Google Scholar

[17] M.W. Brown and K.J. Miller, in: Multiaxial Fatigue, ASTM, Philadelphia (1985), p.135.

Google Scholar

[18] M.W. Brown and K.J. Miller, in: Low-Cycle Fatigue and Life Prediction, ASTM, Philadelphia (1982), p.482.

Google Scholar

[19] Y.S. Garud: J. Test Eval. Vol. 9 (1981), p.165.

Google Scholar

[20] K. Rahka and C. Laird: J. Test Eval. Vol. 14 (1986), p.173.

Google Scholar

[21] F. Ellyin, K. Golos and Z. Xia: Trans. ASME J. Engng. Mater. Technol. Vol. 113 (1991), p.112.

Google Scholar

[22] A. Karolczuk and E. Macha: Engineering Fracture Mechanics Vol. 75 (2008), p.389.

Google Scholar

[23] Y.Y. Wang and W.X. Yao: Int. J. Fatigue Vol. 4 ( 2006), p.401.

Google Scholar

[24] T.E. Langlais, et al: Int. J. Fatigue vol. 25 (2003), p.641.

Google Scholar

[25] X. Chen, S.Y. Xu and D.X. Huang: Fatigue Fract. Eng. Mater. Struct. Vol. 22 (1999), p.679.

Google Scholar

[26] I.V. Papadopoulos: Int. J. Fatigue vol. 19 (1997), p.219.

Google Scholar

[27] X. Pitoiset, I. Rychlik and A. Prenmort: Fatigue Fact. Engng. Mater. Stuct. 24 (2001), p.715.

Google Scholar

[28] S.H. Stefanov: Int. J. Fatigue Vol. 17 (1995), p.567.

Google Scholar

[29] F. Morel, et al: Int. J. Fatigue Vol. 25 (2003), p.1007.

Google Scholar

[30] M.W. Brown, and K.J. Miller: Proc. Inst. Mechanical Engineers Vol. 187 (1973), p.745.

Google Scholar

[31] F.A. Kandil, M.W. Brown and K.J. Miller: The Metals Society Vol. 280 (1982), p.205.

Google Scholar

[32] A. Fatemi and D.F. Socie: Fatigue Eng. Mater. Struct Vol. 11 (1988), p.149.

Google Scholar

[33] A. Fatemi and D.F. Socie, in: Fatigue Science and Tech., Kluwer Academic Publishers (1989).

Google Scholar

[34] K.N. Smith, P. Watson and T.H. Topper: Journal of Materials Vol. 5 (1970), p.767.

Google Scholar

[35] J.A. Bannantine and D.F. Socie, in: Fatigue under Biaxial and Multiaxial Loading, Mechanical Engineering Publication, London (1991), p.35.

Google Scholar

[36] A. Carpinteri, et al: Int. J. Fracture Vol. 115 (2002), p.87.

Google Scholar

[37] L. Wang and D.J. Wang: Chinese J. Mechanical Engineering Vol. 18 (2005), p.145.

Google Scholar

[38] C.H. Wang and M.W. Brown: Fatigue Fract. Eng. Mater. Struct. Vol. 16 (1993), p.1285.

Google Scholar

[39] C.H. Wang and M.W. Brown: J. Eng. Mater. Tech. Vol. 118 (1996), p.367.

Google Scholar

[40] D.G. Shang, D.J. Wang, H. Xu and A. Ping: Acta Mechanical Solid Silica Vol. 11 (1998), p.261.

Google Scholar

[41] A. Murat and C. Mehmet: Mechanical Systems and Signal Processing Vol. 23 (2009), p.897.

Google Scholar

[42] M. Iranpour, F. Taheri and J. Kim Vandiver: Marine Structures Vol. 21 (2008), p.353.

Google Scholar