[1]
M. Li et al., "Microstructure, mechanical properties, corrosion resistance and cytocompatibility of WE43 Mg alloy scaffolds fabricated by laser powder bed fusion for biomedical applications," Materials Science and Engineering: C, vol. 119, p.111623, 2021/02/01/ 2021.
DOI: 10.1016/j.msec.2020.111623
Google Scholar
[2]
H. Hyer, L. Zhou, G. Benson, B. McWilliams, K. Cho, and Y. Sohn, "Additive manufacturing of dense WE43 Mg alloy by laser powder bed fusion," Additive Manufacturing, vol. 33, p.101123, 2020/05/01/ 2020.
DOI: 10.1016/j.addma.2020.101123
Google Scholar
[3]
G. Song, "Control of biodegradation of biocompatable magnesium alloys," Corrosion Science, vol. 49, no. 4, pp.1696-1701, 2007/04/01/ 2007.
DOI: 10.1016/j.corsci.2007.01.001
Google Scholar
[4]
T.-C. Wu, S. S. Joshi, Y.-H. Ho, M. V. Pantawane, S. Sinha, and N. B. Dahotre, "Microstructure and surface texture driven improvement in in-vitro response of laser surface processed AZ31B magnesium alloy," Journal of Magnesium and Alloys, vol. 9, no. 4, pp.1406-1418, 2021/07/15/ 2021.
DOI: 10.1016/j.jma.2020.11.002
Google Scholar
[5]
J. Park et al., "Corrosion behavior of biodegradable Mg-based alloys via femtosecond laser surface melting," Applied Surface Science, vol. 448, pp.424-434, 2018/08/01/ 2018.
DOI: 10.1016/j.apsusc.2018.04.088
Google Scholar
[6]
C. C. Ng, M. M. Savalani, H. C. Man, and I. Gibson, "Layer manufacturing of magnesium and its alloy structures for future applications," Virtual and Physical Prototyping, vol. 5, no. 1, pp.13-19, 2010/03/01 2010.
DOI: 10.1080/17452751003718629
Google Scholar
[7]
J. Liu et al., "Biodegradable magnesium alloy WE43 porous scaffolds fabricated by laser powder bed fusion for orthopedic applications: Process optimization, in vitro and in vivo investigation," Bioactive Materials, vol. 16, pp.301-319, 2022/10/01/ 2022.
DOI: 10.1016/j.bioactmat.2022.02.020
Google Scholar
[8]
S. Santhanakrishnan et al., "Macro- and Microstructural Studies of Laser-Processed WE43 (Mg-Y-Nd) Magnesium Alloy," Metallurgical and Materials Transactions B, vol. 44, no. 5, pp.1190-1200, 2013/10/01 2013.
DOI: 10.1007/s11663-013-9896-7
Google Scholar
[9]
B. Manne, H. Thiruvayapati, S. Bontha, R. Motagondanahalli Rangarasaiah, M. Das, and V. K. Balla, "Surface design of Mg-Zn alloy temporary orthopaedic implants: Tailoring wettability and biodegradability using laser surface melting," Surface and Coatings Technology, vol. 347, pp.337-349, 2018/08/15/ 2018.
DOI: 10.1016/j.surfcoat.2018.05.017
Google Scholar
[10]
D. Zhang, Y. Qin, W. Feng, M. Huang, X. Wang, and S. Yang, "Microstructural evolution of the amorphous layers on Mg-Zn-Ca alloy during laser remelting process," Surface and Coatings Technology, vol. 363, pp.87-94, 2019/04/15/ 2019.
DOI: 10.1016/j.surfcoat.2019.02.051
Google Scholar
[11]
X. Yao et al., "Surface modification of biomedical Mg-Ca and Mg-Zn-Ca alloys using selective laser melting: Corrosion behaviour, microhardness and biocompatibility," Journal of Magnesium and Alloys,vol. 9, no. 6, pp.2155-2168, 2021/11/15/ 2021.
DOI: 10.1016/j.jma.2020.08.011
Google Scholar
[12]
Y. Kang et al., "Comparative Study of Hot Deformation Behavior and Microstructure Evolution of As-Cast and Extruded WE43 Magnesium Alloy," Metals, vol. 10, no. 4.
DOI: 10.3390/met10040429
Google Scholar
[13]
J. Zhang et al., "Enhanced strength of WE43 magnesium-rare earth alloy via combining extrusion and aging," Materials Science and Engineering: A, vol. 880, p.145329, 2023/07/26/ 2023.
DOI: 10.1016/j.msea.2023.145329
Google Scholar
[14]
P. Kristofova, J. Kubasek, D. Vojtech, D. Palousek, and J. Suchy, "Microstructure of the Mg-4Y-3RE-Zr (WE43) Magnesium Alloy Produced by 3D Printing," Manufacturing Technology Journal, vol. 19, no. 1, pp.89-94, 2019// 2019.
DOI: 10.21062/ujep/249.2019/a/1213-2489/MT/19/1/89
Google Scholar
[15]
S. Kou, Welding metallurgy, 2nd edition, 2nd ed. ed. Wiley, 2003.
Google Scholar
[16]
Z. Pu et al., "Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy," Corrosion Science, vol. 57, pp.192-201, 2012/04/01/ 2012.
DOI: 10.1016/j.corsci.2011.12.018
Google Scholar
[17]
G.-L. Song and Z. Xu, "Effect of microstructure evolution on corrosion of different crystal surfaces of AZ31 Mg alloy in a chloride containing solution," Corrosion Science, vol. 54, pp.97-105, 2012/01/01/ 2012.
DOI: 10.1016/j.corsci.2011.09.005
Google Scholar