Development, Purification and Structural Evaluation of β-CDs from Cassava Waste Using CGTase and Nanostructured Encapsulated Plant Mediated AuNPs via Sustainable and Environmentally Friendly Techniques

Article Preview

Abstract:

Cassava peels (CP) are agricultural-industrial co-products, better means of generating wealth that have recently attracted the attention and efforts of scientists due to their vitality in achieving a higher standard of living in a variety of industrial applications and human health care. Hence, an urgent demand for low-cost, non-toxic nanostructure material that can host, deliver, and transmit light with improved optical properties. In this work, β-cyclodextrins (β-CDs) was produced from cassava starch using US132 Cyclodextrins glucanotransferase enzyme (CGTase), converting it to cyclic oligosaccharides using experimental designs. The β-CDs produced by US132 CGTase are subsequently refined to a high level (67.26 g L-1) and homogenized using an eco-friendly, straightforward crystallization process that yielded a 40% purification yield. Gold nanoparticles (AuNPs) was effectively synthesized from Kahaya senegalenses plant, as a natural reducing agent. The Uv-visible and SEM evaluations revealed the plasmon resonance bands and spherical cap-shaped morphology of the developed hybridized β-CDs/AuNPs. However, the functional groups contained in the developed nanohybrids were validated by the FT-IR analysis. The size and crystallinity of the developed sample was found within the nano range as deduced from XRD and TEM (20-20 nm) analysis. The successful formation the developed nanostructured β-CDs/AuNPs was confirmed employing Uv-Visible, XRD, FT-R and SEM analysis. Therefore, the developed nanostructured β-CDs/AuNPs displayed significant and noticeable advantages which can withstand present drifts, due to its environmental friendliness, biocompatibility and encapsulating effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-46

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Yao, A. Zou, Z. Tian, W. Meng, X. Fang, T. Wu & J. Cheng, Construction and characterization of a temperature-responsive nanocarrier for imidacloprid based on mesoporous silica nanoparticles. Colloids and Surfaces B: Bio interfaces. 41 (2020) 111-464.

DOI: 10.1016/j.colsurfb.2020.111464

Google Scholar

[2] S. X. Huang, D. Z, Hou, P. X. Qi, Q. Wang, H. L. Chen, L. Y, Ci. S. Chen, Biochem. Biophys. Res. Commun. 7 (2020) 523 -651.

Google Scholar

[3] M. R. Stam, E. G. Danchin, C. Rancurel, P. M. Coutinho, B. Henrissat, Protein Eng. Des. Sel. 19 (2016) 555.

Google Scholar

[4] A. Dura, C. M. Rosell, Int. J. Biol. Macromol. 87 (2016), 466.

Google Scholar

[5] S. Wüpper, K. Lüersen, G. Rimbach, Biomolecules. 11 (2021) 401.

Google Scholar

[6] C. H. Lim, B. Rasti, J. Sulistyo, M. A. Hamid, Heliyon. 7 (2021) 06-305.

Google Scholar

[7] G. S. Jemli, E. B. Messaoud, D. Ayadi-Zouari, B. Naili, B. Khemakhem, S. Bejar, Biochem. Eng. J. 34 (2007) 44.

DOI: 10.1016/j.bej.2006.11.016

Google Scholar

[8] S. T. Jones, V. Cagno, M. Janeˇcek, D. Ortiz, N. Gasilova, J., Piret, M. Gasbarri, D. A. Constant, Y. Han, L. Vukovi´c, P. Král, L. Kaiser, S. Huang, S. Constant, K. Kirkegaard, G. Boivin, F. Stellacci, C. Tapparel, Sci. Adv. 6 (2020) 9318.

DOI: 10.1126/sciadv.aax9318

Google Scholar

[9] P. F. Garrido, M. Calvelo, A. Blanco-González, U. Veleiro, F., Suárez, D. Conde, A. Cabezón, Á. Piñeiro, R. Garcia-Fandino, Inter. J. Pharma. 588 (2020) 119-689.

DOI: 10.1016/j.ijpharm.2020.119689

Google Scholar

[10] S. Dhiman, B. Srivastava, G. Singh, M. Khatri, S. K. Arya, Int. J. Biol. Macromol. 156 (2020) 1347.

Google Scholar

[11] W. Tang, C. Zou, C. Da, Y., Cao, H. Peng, Carbohydr. Polymer. 240 (2020) 116-321.

Google Scholar

[12] B. L. Silva-Júnior, G. L. Marques, N. S. Reis, R. R. Maldonado, R. L. S. Santos, E. Aguiar-Oliveira, Braz. J. Chem. Eng. 36 (2019) 1393.

Google Scholar

[13] K. H. Pinheiro, L. S. Watanabe, S. L. Nixdorf, C. E. Barão, T. C., Pimentel, G. Matioli, F. F. de Moraes, Starch-Stärke. 70 (2018) 18-73.

DOI: 10.1002/star.201800073

Google Scholar

[14] V. C. Fenelon, J. H. Miyoshi, C. S. Mangolim, A. S. Noce, L. N. Koga, G. Matioli, Carbohydr. Polym. 192 (2018) 19.

Google Scholar

[15] K. N. Rajput, K. C. Patel, U. B. Trivedi, Biotechnol. Res. Int. 20 (2016) 34-359.

Google Scholar

[16] M., Duan, Y., Wang, G., Yang, J., Li, Y., Wan, Y., Deng, Y. Mao, Ann. Microbiol. 70 (2020) 1.

Google Scholar

[17] S. Mechri, K. Bouacem, T. B. Chalbi, M. Khaled, F, Allala, A. BouananeDarenfed, B. Jaouadi, J. Surfactants Deterg. (2022). http://doi.org/10. 1002/jsde.12583.

Google Scholar

[18] M. El-Shetehy, A. Moradi, M. Maceroni, D. Reinhardt, A. Petri-Fink, B. Rothen-Rutishauser, & F. Schwab Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nature Nanotechnology. 8 (2020) 11- 116.

DOI: 10.1038/s41565-020-00812-0

Google Scholar

[19] X.Y. Gao, G., Chen, and L.H., Ning, Plasmonic Characteristics of Nanorod-Based Metallic Nanostructures. Optics & Laser Technology. 48 (2013) 394-400.

DOI: 10.1016/j.optlastec.2012.10.036

Google Scholar

[20] Z.M. Jiang, G.Y. Li, and M.X., Zhang, A Novel Electrochemical Sensor Based on SH-β-Cyclodextrin Functionalized Gold Nanoparticles/Reduced-Graphene Oxide Nanohybrids for Ultrasensitive Electrochemical Sensing of Acetaminophen and Ofloxacin. International Journal of Electrochemical Science. 12 (2017) 5157-5173.

DOI: 10.20964/2017.06.28

Google Scholar

[21] M. Yadav, M. Das, S. Bhatt, P. Shah, R. Jadeja, and S. Thakore, Rapid Selective Optical Detection of Sulphur Containing Agrochemicals and Amino Acid by Functionalized Cyclodextrin Polymer Derived Gold Nanoprobes. Microchemical Journal. 169 (2021) 106-630.

DOI: 10.1016/j.microc.2021.106630

Google Scholar

[22] E.G. Andriotis, G.K. Eleftheriadis, C. Karavasili, and D.G. Fatouros, Development of Bio-Active Patches Based on Pectin for the Treatment of Ulcers and Wounds Using 3D-Bioprinting Technology. Pharmaceutics J, 12 (2020) 120-1056.

DOI: 10.3390/pharmaceutics12010056

Google Scholar

[23] E. Fenyvesi, M. Vikmon, and L. Szente, Cyclodextrins in Food Technology and Human Nutrition: Benefits and Limitations. Critical Reviews in Food Science and Nutrition. 56 (2016) 1981-2004.

DOI: 10.1080/10408398.2013.809513

Google Scholar

[24] R. Banerjee, R. Sinha, and P. Purkayastha, β-Cyclodextrin Encapsulated Coumarin 6 on Graphene Oxide Nanosheets: Impact on Ground-State Electron Transfer and Excited-State Energy Transfer. ACS Omega. 4 (2019) 16153-16158.

DOI: 10.1021/acsomega.9b02335

Google Scholar

[25] O.J. Olaniyan, E.O. Dare, T. O. Alonge, F.O. Oladoyinbo, A.M. Akiode, Green Synthesis, Hybridization of SiO2 by alkaline-acid leaching method and their optical and structural properties using rice husk and Angeissus leiocarpus Extract. 43 (2024) 75-85.

DOI: 10.4028/p-ly1rwj

Google Scholar

[26] A. Javed, A. Ahmad, A. Tahir, U. Shabbir, M. Nouman, A. Hameed, AIMS Agric. Food 4 (2019) 807.

Google Scholar

[27] M. Duan, Y. Wang, G. Yang, J. Li, Y. Wan, Y. Deng, Y. Mao, Ann. Microbiol. 1 (2020) 70.

Google Scholar

[28] C. A. Ferraz, R. L. Fontes, G. C. Fontes-Sant'Ana, V. Calado, E. O. López, M. H. Rocha-Leão, Starch-Stärke. 71 (2019) 1800023.

DOI: 10.1002/star.201800023

Google Scholar

[29] M. Torres, P. Fradinho, P. Rodríguez, E. Falqué, V. Santos, H. Domínguez, J. Food Eng. 275 (2020) 109886.

DOI: 10.1016/j.jfoodeng.2019.109886

Google Scholar

[30] B. Amara, Fakhreddine, Bouzid, Moetaz, Sahnoun, Mouna, Ben Nasr, Yosri, Jauadi, Bassem, Bejar, Samir, Jemli, and Sonia. Valorization of potato peels starch for efficient β-Cyclodextrins production and purification through an eco-friendly process. Starch/Staerke. 74 (2022) 1.

DOI: 10.1002/star.202200037

Google Scholar

[31] [ S. K. N. Das, Kahali, A. Bose, and J. Khanam, Physicochemical Characterization and in Vitro Dissolution Performance of Ibuprofen-Captisol® (Sulfobutylether Sodium Salt of β-CD) Inclusion Complees. Journal of Molecular Liquids. 261 (2018) 239-249.

DOI: 10.1016/j.molliq.2018.04.007

Google Scholar

[32] O. Adeoye, C. Costa, T. Casimiro, A. Aguiar-Ricardo, and H. Cabral-Marques, Preparation of Ibuprofen/Hydroxypropyl-γ-Cyclodextrin Inclusion Complexes Using Supercritical CO2-Assisted Spray Drying. The Journal of Supercritical Fluids. 133 (2018) 479-485.

DOI: 10.1016/j.supflu.2017.11.009

Google Scholar

[33] F. Ciulu-Costinescu, P. Podgoreanu, C. Delcaru, A. Simionescu, E.F. Georgescu, M. Bostan, and M.C. Chifiriuc, Antimicrobial Assay of a Capsaicin-α-Cyclo dextrin Inclusion Complex against Planktonic and Adherent Cells. Farmacia. 67 (2019) 496-503.

DOI: 10.31925/farmacia.2019.3.18

Google Scholar

[34] G. Neri, A. Cordaro, A., Scala, M. Cordaro, A. Mazzaglia, and A. Piperno, PEGylated Bis-Adamantane Carboxamide as Guest Bridge for Graphene Poly-Cyclodextrin Gold Nanoassemblies. Journal of Molecular Structure, 1240 (2021) 130519.

DOI: 10.1016/j.molstruc.2021.130519

Google Scholar

[35] V.C. da CunhaTrajano, C.B. Brasileiro, J.A. de Souza Henriques, de Miranda Cota, L. Lanza, C.R. and M.E. Cortés, Doxycycline Encapsulated in β-Cyclodextrin for Periodontitis: A Clinical Trial. Brazilian Oral Research. 33 (2019) 0112.

DOI: 10.1590/1807-3107bor-2019.vol33.0112

Google Scholar

[36] O.J. Olaniyan, E.O. Dare, O. R. Adetunji, O.O. Adedeji, S.O. Ogungbesan, Synthesis and Characterization of Chitosan-Silver Nanocomposite Film. Nano Hybrids and Composites. 11 (2016) 22–29.

DOI: 10.4028/www.scientific.net/nhc.11.22

Google Scholar

[37] Z.M. Jiang, G.Y. Li, and M.X. Zhang, A Novel Electrochemical Sensor Based on SH-β-Cyclodextrin Functionalized Gold Nanoparticles/Reduced-Graphene Oxide Nanohybrids for Ultrasensitive Electrochemical Sensing of Acetaminophen and Ofloxacin. International Journal of Electrochemical Science.12 (2017) 5157-5173.

DOI: 10.20964/2017.06.28

Google Scholar

[38] Zhang, J.Q. Wu, D. Jiang, K.M., Zhang, D. Zheng, X. Wan, C.P. Lin, J. et al. Preparation, Spectroscopy and Molecular Modelling Studies of the Inclusion Complex of Cordycepin with Cyclodextrins. Carbohydrate Research. 406 (2015) 55- 64.

DOI: 10.1016/j.carres.2015.01.005

Google Scholar

[39] A. Javed, A. Ahmad, A. Tahir, U. Shabbir, M. Nouman, A. Hameed, AIMS Agric. Food 2019, 4, 807.

Google Scholar

[40] S.X. Wu, Y.H. Luo, Q.S. Mou, Li, J.H. and X.X. Luo, A Thio-β-Cyclodextrin Functionalized Graphene/Gold Nanoparticle Electrochemical Sensor: A Study of the Size Effect of the Gold Nanoparticles and the Determination of Tetrabromobisphenol A. RSC Advances. 9 (2019) 17897-17904.

DOI: 10.1039/c9ra02614b

Google Scholar

[41] P. Manickam, A. Vashist, S. Madhu, M. Sadasivam, A. Sakthivel, A. K. aushik, And M. Nair, Gold Nanocubes Embedded Biocompatible Hybrid Hydrogels for Electrochemical Detection of H2O2. Bioelectrochemistry. 131 (2020) 107373.

DOI: 10.1016/j.bioelechem.2019.107373

Google Scholar

[42] M. Yadav, Das, Bhatt, M. Shah, S. Jadeja, P. and R. Thakore, S. Rapid Selective Optical Detection of Sulfur Containing Agrochemicals and Amino Acid by Functionalized Cyclodextrin Polymer Derived Gold Nanoprobes. Microchemical. Journal. 69 (2021) 106630.

DOI: 10.1016/j.microc.2021.106630

Google Scholar