Thermoelectric Properties of Antiperovskite X3SiO (X = Sr and Ba)

Article Preview

Abstract:

Thermoelectric materials are useful for various application in daily life. Their application such as sensors, generators and electronic components, making thermoelectric materials widely studied. Antiperovskite compounds that can have semiconducting behaviour is probable candidate for thermoelectric materials. In this article, thermoelectric properties of anti-perovskite X3SiO (X = Sr and Ba) were investigated using density functional theory (DFT) method and Boltzmann Transport Equations (BTE). Electronic properties such as band structure, partial density of states were computed using the generalized gradient approximation with Perdew-Burke-Ernzerhof (GGA-PBE) functional in CASTEP code. The thermoelectric properties such as Seebeck coefficient, electrical conductivity, and power factor are calculated using BoltzTraP code that utilised BTE. The calculated band structures of Ba3SiO and Sr3SiO show that these compounds having semiconductor behaviour with direct band gap of 0.44 and 0.43 eV respectively at Γ-Γ k-point. It was found that Ba3SiO is a better candidate for thermoelectric materials due to its higher Seebeck coefficient (-4.90 10-4 V/K) at room temperature compared to calculated Seebeck coefficient (-5.84 10-4 V/K) of Sr3SiO. The power factor value of Ba3SiO which is 2.96 x 10-4 W/mK2 is also higher compared to power factor of Sr3SiO at 7.12 x 10-7 W/mK2 at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-23

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Yang, Z. G. Chen, and J. Zou, High-Performance Thermoelectric Materials for Solar Energy Application, Emerging Materials for Energy Conversion and Storage, Elsevier. (2018) 3–38.

DOI: 10.1016/b978-0-12-813794-9.00001-6

Google Scholar

[2] M. Wolf, R. Hinterding, & A. Feldhoff, High Power Factor vs. High zT—A Review of Thermoelectric Materials for High-Temperature Application, Entropy. (2019) 1058.

DOI: 10.3390/e21111058

Google Scholar

[3] M. Bilal, S. Jalali-Asadabadi, R. Ahmad, and I. Ahmad, Electronic Properties of Antiperovskite Materials from State-of-the-Art Density Functional Theory, J. Chem. 2015 (2015) 1–11.

DOI: 10.1155/2015/495131

Google Scholar

[4] J. Nuss, C. Mühle, K. Hayama, V. Abdolazimi, and H. Takagi, Tilting structures in inverse perovskites, M3TtO (M = Ca, Sr, Ba, Eu; Tt = Si, Ge, Sn, Pb), Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater, 71. (2015) 300–312.

DOI: 10.1107/s2052520615006150

Google Scholar

[5] M. Ochi and K. Kuroki, Comparative First-Principles Study of Antiperovskite Oxides and Nitrides as Thermoelectric Material: Multiple Dirac Cones, Low-Dimensional Band Dispersion, and High Valley Degeneracy, Phys. Rev. Appl. 12 (2019) 034009.

DOI: 10.1103/physrevapplied.12.034009

Google Scholar

[6] T. H. Hsieh, J. Liu & L. Fu, Topological crystalline insulators and Dirac octets in antiperovskites, Phys. Rev. B. (2014) 081112.

DOI: 10.1103/physrevb.90.081112

Google Scholar

[7] Y. Okamoto, A. Sakamaki & K. Takenaka, Thermoelectric properties of antiperovskite calcium oxides Ca3PbO and Ca3SnO, J. Appl. Phys. (2016) 205106.

DOI: 10.1063/1.4952393

Google Scholar

[8] M. Hassan, A. Shahid, Q. Mahmood, Structural, electronic, optical and thermoelectric investigations of antiperovskites A3SnO (A= Ca, Sr, Ba) using density functional theory, Solid State Commun. 270 (2018) 92–98.

DOI: 10.1016/j.ssc.2017.11.019

Google Scholar

[9] T. Kariyado, M. Ogata, Evolution of band topology by competing band overlap and spin-orbit coupling: twin Dirac cones in Ba3SnO as a prototype, Phys. Rev. Mater. 1 (2017), 06120

DOI: 10.1103/physrevmaterials.1.061201

Google Scholar

[10] X. He, S. Kimura, T. Katase, T. Tadano, S. Matsuishi, M. Minohara, H. Hiramatsu, H. Kumigashira, H. Hosono & T. Kamiya, Inverse‐Perovskite Ba3BO (B = Si and Ge) as a High Performance Environmentally Benign Thermoelectric Material with Low Lattice Thermal Conductivity, Adv. Sci. 11 (2023) 2307058.

DOI: 10.1002/advs.202307058

Google Scholar

[11] K. Haddadi, A. Bouhemadou, L. Louail & S. Bin-Omran, Inverse-perovskite oxides with , Ge, Sn, Pb: Structural, elastic and thermal properties. Solid State Commun. 150 (2010)1995–2000.

DOI: 10.1016/j.ssc.2010.08.021

Google Scholar

[12] M. D. Segall , Philip J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne, First-principles simulation: Ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter. 14 (2002) 2717–2744.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[13] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 18 (1996) 3865–3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[14] J. Carrete, B. Vermeersch, A. Katre, A. van Roekeghem, T. Wang, G. K. H. Madsen & N. Mingo, almaBTE : A solver of the space–time dependent Boltzmann transport equation for phonons in structured materials, Comput. Phys. Commun. 220, (2017) 351–362.

DOI: 10.1016/j.cpc.2017.06.023

Google Scholar

[15] Chelikowsky, J. R. Nanostructures, Electronic Structure of, Encyclopedia of Condensed Matter Physics, Academic Press, Austin, TX, USA, 2005, p.51–58.

DOI: 10.1016/b0-12-369401-9/00468-x

Google Scholar

[16] B. Huang and J. D. Corbett, Orthorhombic Inverse Perovskitic Ba3TtO (Tt = Ge, Si) as Zintl phases, Zeitschrift fur Anorg. und Allg. Chemie. 624 (1998) 1787–1790.

DOI: 10.1002/(sici)1521-3749(1998110)624:11<1787::aid-zaac1787>3.0.co;2-p

Google Scholar

[17] A. Velden and M. Jansen, Zur Kenntnis der inversen Perowskite M3TO (M = Ca, Sr, Yb; T = Si, Ge, Sn, Pb), Zeitschrift für anorganische und allgemeine Chemie. 630 (2004) 234–238.

DOI: 10.1002/zaac.200300313

Google Scholar

[18] A. C. Garcia-Castro, R. Ospina, and J. H. Quintero, Octahedral distortion and electronic properties of the antiperovskite oxide Ba3SiO: First principles study, J. Phys. Chem. Solids. 136 (2020) 109126.

DOI: 10.1016/j.jpcs.2019.109126

Google Scholar

[19] D. H. Fabini, M. Koerner, and R. Seshadri, Candidate Inorganic Photovoltaic Materials from Electronic Structure-Based Optical Absorption and Charge Transport Proxies, Chem. Mater. 31 (2019) 1561–1574.

DOI: 10.1021/acs.chemmater.8b04542

Google Scholar

[20] S. Naz, Z. Ali, S. Mehmood, I. Khan, and I. Ahmad, Spin-orbit coupling effect on the optoelectronic and thermoelectric properties of the perovskites A3SnO (A = Ca, Sr and Ba), Mater. Sci. Semicond. Process. 132 (2021) 105905.

DOI: 10.1016/j.mssp.2021.105905

Google Scholar

[21] K. Adithya and A. Zlatan, Materials selection rules for optimum power factor in two-dimensional thermoelectrics. J. Phys. Mater. 3 (2020) 015005.

DOI: 10.1088/2515-7639/ab4600

Google Scholar

[22] B. Sawicki, E. Tomaszewicz, M. Piątkowska, T. Groń, H. Duda, and K. Górny, Correlation between the band-gap energy and the electrical conductivity in MPr2W2O10 tungstates (Where M = Cd, Co, Mn), Acta Phys. Pol. A. 129 (2016) A94–A96.

DOI: 10.12693/aphyspola.129.a-94

Google Scholar

[23] X. Yang, Z. Sun, G. Ge & J. Yang, Enhanced Power Factor and Ultralow Lattice Thermal Conductivity Induced High Thermoelectric Performance of BiCuTeO/BiCuSeO Superlattice, Materials. 16 (2023) 4318.

DOI: 10.3390/ma16124318

Google Scholar

[24] A. M. Ganose, A. J. Jackson & D. O. Scanlon, sumo: Command-line tools for plotting and analysis of periodic ab initio calculations. J. Open Source Softw. 3 (2018) 717.

DOI: 10.21105/joss.00717

Google Scholar