[1]
Víctor Luaña, Aurora Costales, and A. Martín Pendás, Ions in crystals: The topology of the electron density in ionic materials.II. The cubic alkali halide perovskites, Phys. Rev. B. 55 (1997) 4285.
DOI: 10.1103/physrevb.55.4285
Google Scholar
[2]
L.Q. Jiang, J.K. Guo, H.B. Liu, M. Zhu, X. Zhou, P. Wu, C.H. Li, Prediction of lattice constant in cubic perovskites, J. of Phys. and Chem. of Solids. 67 (2006) 1531-1536.
DOI: 10.1016/j.jpcs.2006.02.004
Google Scholar
[3]
W. Xu, Q. Hu, S. Bai, C. Bao, Y. Miao, Z. Yuan, T. Borzda, A. J. Barker, E. Tyukalova, Z. Hu, M. Kawecki, H. Wang, Z. Yan, X. Liu, X. Shi, K. Uvdal, M. Fahlman, W. Zhang, M. Duchamp, J.-M. Liu, A. Petrozza, J. Wang, L.-M. Liu, W. Huang, and F. Gao, Rational molecular passivation for high-performance perovskite light-emitting diodes, Nature Photonics 13 (2019) 418-424.
DOI: 10.1038/s41566-019-0390-x
Google Scholar
[4]
S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites, Nat. Commun. 6 (2015) 8056.
DOI: 10.1038/ncomms9056
Google Scholar
[5]
S. Khan, N. Mehmood, R. Ahmad, A. Kalsoom, and K. Hameed, Analysis of structural, elastic and optoelectronic properties of indium-based halide perovskites InACl3 (A = Ge, Sn, Pb) using density functional theory, Mater. Sci. Semicond. Process. 150 (2022) 106973.
DOI: 10.1016/j.mssp.2022.106973
Google Scholar
[6]
A. K. Jena, A. Kulkarni, and T. Miyasaka, Halide Perovskite Photovoltaics: Background, Status, and Future Prospects, Chem. Rev. 119 (2019) 3036–3103.
DOI: 10.1021/acs.chemrev.8b00539
Google Scholar
[7]
A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc. 131 (2009) 6050-6051.
DOI: 10.1021/ja809598r
Google Scholar
[8]
I. Hany, G. Yang, Q. V. Phan, and H. J. Kim, Thallium lead iodide (TlPbI3) single crystal inorganic perovskite: Electrical and optical characterization for gamma radiation detection, Mater. Sci. Semicond. Process. 121 (2021) 105392.
DOI: 10.1016/j.mssp.2020.105392
Google Scholar
[9]
Y. Fujimoto, K. Saeki, T. Yanagida, M. Koshimizu, and K. Asai, Luminescence and scintillation properties of TlCdCl3 crystal, Radiat. Meas. 106 (2017) 151-154.
DOI: 10.1016/j.radmeas.2017.03.034
Google Scholar
[10]
Y. Fujimoto, M. Koshimizu, T. Yanagida, G. Okada, K. Saeki, and K. Asai, Thallium magnesium chloride: A high light yield, large effective atomic number, intrinsically activated crystalline scintillator for X-ray and gamma-ray detection, Jpn. J. Appl. Phys. 55 (2016) 090301.
DOI: 10.7567/jjap.55.090301
Google Scholar
[11]
F. Hamioud, G. S. AlGhamdi, S. Al-Omari, and A. A. Mubarak, Ab initio investigation of the structural, electronic, magnetic and optical properties of the perovskite TlMnX3 (X = F, Cl) compounds, Int. J. Mod. Phys. B 30 (2016) 1650031.
DOI: 10.1142/s0217979216500314
Google Scholar
[12]
S. Khan, S. U. Zaman, R. Ahmad, N. Mehmood, M. Arif, and H. J. Kim, Ab initio investigations of structural, elastic, electronic and optical properties of the fluoroperovskite TIXF3 (X=Ca, Cd, Hg, and Mg) compounds, Mater. Res. Express 6 (2020) 125923.
DOI: 10.1088/2053-1591/ab5e37
Google Scholar
[13]
S. U. Zaman, N. Rahman, M. Arif, M. Saqib, M. Husain, E. Bonyah, Z. Shah, S. Zulfiqar, and A. Khan, Ab initio investigation of the physical properties of Tl based chloroperovskites TlXCl3 (X = Ca and Cd), AIP Adv. 11 (2021) 015204.
DOI: 10.1063/5.0034759
Google Scholar
[14]
R. Yadav, A. Srivastava, R. Sharma, J. A. Abraham, S. A. Dar, A. K. Mishra, and V. Srivastava, The study of optical and thermoelectric behaviour of thalium based flouropervoskite (TlSiF3) for photovoltaic and renewable energy applications by DFT, J. Solid State Chem. 313 (2022) 123266.
DOI: 10.1016/j.jssc.2022.123266
Google Scholar
[15]
M. Sohail, M. Husain, N. Rahman, K. Althubeiti, M. Algethami, A. Ali Khan, A. Iqbal, A. Ullah, A. Khan, and R. Khan, First-principal investigations of electronic, structural, elastic and optical properties of the fluoroperovskite TlLF3 (L = Ca, Cd) compounds for optoelectronic applications, RSC Adv. 12 (2022) 7002-7008.
DOI: 10.1039/d2ra00464j
Google Scholar
[16]
S. U. Zaman, S. Khan, N. Mehmood, A. U. Rahman, R. Ahmad, N. Sultan, F. Ullah, and H. J. Kim, Heavy thallium based fluoroperovskite TlAF3 (A = Ge, Sn and Pb) compounds: a computational investigation, Opt. Quantum Electron. 54 (2022) 396.
DOI: 10.1007/s11082-022-03755-z
Google Scholar
[17]
M. Husain, N. Rahman, R. Khan, M. Sohail, A. A. Khan, H. O. Elansary, T. K. Z. El-Abedin, E. A. Mahmoud, S. A. M. Abdelmohsen, and A. Khan, Exploring the exemplary structural, electronic, optical, and elastic nature of inorganic ternary cubic XBaF3 (X = Al and Tl) employing the accurate TB-mBJ approach, Semicond. Sci. Technol. 37 (2022) 075004.
DOI: 10.1088/1361-6641/ac6d00
Google Scholar
[18]
R. K. Pingak, A DFT study of structural and electronic properties of cubic thallium based fluoroperovskites TlBF3 (Bdouble bondGe,Sn,Pb,Zn,Cd,Hg,Mg,Ca,Sr,Ba), Comput. Condens. Matter 33 (2022) e00747.
DOI: 10.1016/j.cocom.2022.e00747
Google Scholar
[19]
R. Yadav, A. Srivastava, J. A. Abraham, R. Sharma, and S. A. Dar, First-principles calculations to investigate structural, electronic, thermoelectric, and optical properties of heavy thallium perovskite TlPbX3 (X = Cl, Br, I), Mater. Sci. Eng. B 283 (2022) 115781.
DOI: 10.1016/j.mseb.2022.115781
Google Scholar
[20]
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter 21 (2009) 395502.
DOI: 10.1088/0953-8984/21/39/395502
Google Scholar
[21]
A. J. Cohen, P. Mori-Sánchez, and W. Yang, Development of exchange-correlation functionals with minimal many-electron self-interaction error, J. Chem. Phys. 126 (2007) 191109.
DOI: 10.1063/1.2741248
Google Scholar
[22]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[23]
J. P. Perdew, M. Ernzerhof, and K. Burke, Rationale for mixing exact exchange with density functional approximations, J. Chem. Phys. 105 (1996) 9982-9985.
DOI: 10.1063/1.472933
Google Scholar
[24]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953.
DOI: 10.1103/physrevb.50.17953
Google Scholar
[25]
D. J. Chadi, Special points for Brillouin-zone integrations, Phys. Rev. B 16 (1977) 1746.
DOI: 10.1103/physrevb.16.1746
Google Scholar
[26]
A. Marini, C. Hogan, M. Grüning, and D. Varsano, yambo: An ab initio tool for excited state calculations, Comput. Phys. Commun. 180 (2009) 1392-1403.
DOI: 10.1016/j.cpc.2009.02.003
Google Scholar
[27]
F. Birch, Finite Elastic Strain of Cubic Crystals, Phys. Rev. 71 (1947) 809.
DOI: 10.1103/physrev.71.809
Google Scholar
[28]
D. N. Huntzinger, A. M. Michalak, C. Schwalm, P. Ciais, A. W. King, Y. Fang, K. Schaefer, Y. Wei, R. B. Cook, J. B. Fisher, D. Hayes, M. Huang, A. Ito, A. K. Jain, H. Lei, C. Lu, F. Maignan, J. Mao, N. Parazoo, S. Peng, B. Poulter, D. Ricciuto, X. Shi, H. Tian, W. Wang, N. Zeng and F. Zhao, Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions, Sci. Rep. 7 (2017) 4765.
DOI: 10.1038/s41598-017-03818-2
Google Scholar
[29]
S. Bouhmaidi, A. Marjaoui, A. Talbi, M. Zanouni, K. Nouneh, and L. Setti, A DFT study of electronic, optical and thermoelectric properties of Ge-halide perovskites CsGeX3 (X=F, Cl and Br), Comput. Condens. Matter 31 (2022) e00663.
DOI: 10.1016/j.cocom.2022.e00663
Google Scholar
[30]
T. C. Jellicoe, J. M. Richter, H. F. J. Glass, M. Tabachnyk, R. Brady, S. E. Dutton, A. Rao, R. H. Friend, D. Credgington, N. C. Greenham, and M. L. Böhm, Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals, J. Am. Chem. Soc. 138 (2016) 2941-2944.
DOI: 10.1021/jacs.5b13470
Google Scholar
[31]
H. B. Ozisik, K. Colakoglu, G. Surucu, and H. Ozisik, Structural and lattice dynamical properties of Zintl NaIn and NaTl compounds, Comput. Mater. Sci. 50 (2011) 1070-1076.
DOI: 10.1016/j.commatsci.2010.11.003
Google Scholar
[32]
A. H. Reshak and M. Jamal, DFT calculation for elastic constants of orthorhombic structure within WIEN2K code: A new package (ortho-elastic), J. Alloys Compd. 543 (2012) 147-151.
DOI: 10.1016/j.jallcom.2012.07.107
Google Scholar
[33]
R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. Sect. A 65 (1952) 349.
Google Scholar
[34]
G. Grimvall, Thermophysical Properties of Materials, first ed., Elsevier, 1999.
Google Scholar
[35]
S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Lond. Edinb. Dublin Philos. Mag. J. Sci. 45 (1954) 823-843.
DOI: 10.1080/14786440808520496
Google Scholar
[36]
A. B. Kuzmenko, Kramers–Kronig constrained variational analysis of optical spectra, Rev. Sci. Instrum. 76 (2005) 083108.
DOI: 10.1063/1.1979470
Google Scholar
[37]
D. R. Penn, Wave-Number-Dependent Dielectric Function of Semiconductors, Phys. Rev. 128 (1962) 2093.
DOI: 10.1103/physrev.128.2093
Google Scholar