First-Principles Investigations of Mechanical, Electronic and Optical Properties of Heavy Thallium Perovskites TlSnX3 (X = F, Cl, Br and I)

Article Preview

Abstract:

In this paper, the mechanical, elastic, electronic and optical properties of thallium based-perovskites TlSnX3 (X = F, Cl, Br and I) were investigated using the first-principles calculations. The elastic parameters calculations show that the perovskites are ductile, anisotropic, and mechanically stables. The cohesive energy calculations indicate that the evaluated perovskites are thermodynamically stable. Moreover, the band calculations with HSE06 method reveal that all perovskites TlSnX3 (X = F, Cl, Br and I) present a semiconductor feature. Further, the optical properties such as reflectivity, refractive index, extinction and absorption coefficients have been calculated and compared for all perovskites compounds. Interestingly, the found results show that the absorption coefficient α(ω) in the visible and infrared regions reaches high values of 1.02, 1.19, 1.14 and 1.03 × 106 cm-1 for TlSnI3, TlSnBr3, TlSnCl3 and TlSnF3 , respectively. These results suggest that the heavy thallium perovskites TlSnX3 (X = F, Cl, Br and I) have potential for optoelectronic applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-13

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Víctor Luaña, Aurora Costales, and A. Martín Pendás, Ions in crystals: The topology of the electron density in ionic materials.II. The cubic alkali halide perovskites, Phys. Rev. B. 55 (1997) 4285.

DOI: 10.1103/physrevb.55.4285

Google Scholar

[2] L.Q. Jiang, J.K. Guo, H.B. Liu, M. Zhu, X. Zhou, P. Wu, C.H. Li, Prediction of lattice constant in cubic perovskites, J. of Phys. and Chem. of Solids. 67 (2006) 1531-1536.

DOI: 10.1016/j.jpcs.2006.02.004

Google Scholar

[3] W. Xu, Q. Hu, S. Bai, C. Bao, Y. Miao, Z. Yuan, T. Borzda, A. J. Barker, E. Tyukalova, Z. Hu, M. Kawecki, H. Wang, Z. Yan, X. Liu, X. Shi, K. Uvdal, M. Fahlman, W. Zhang, M. Duchamp, J.-M. Liu, A. Petrozza, J. Wang, L.-M. Liu, W. Huang, and F. Gao, Rational molecular passivation for high-performance perovskite light-emitting diodes, Nature Photonics 13 (2019) 418-424.

DOI: 10.1038/s41566-019-0390-x

Google Scholar

[4] S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites, Nat. Commun. 6 (2015) 8056.

DOI: 10.1038/ncomms9056

Google Scholar

[5] S. Khan, N. Mehmood, R. Ahmad, A. Kalsoom, and K. Hameed, Analysis of structural, elastic and optoelectronic properties of indium-based halide perovskites InACl3 (A = Ge, Sn, Pb) using density functional theory, Mater. Sci. Semicond. Process. 150 (2022) 106973.

DOI: 10.1016/j.mssp.2022.106973

Google Scholar

[6] A. K. Jena, A. Kulkarni, and T. Miyasaka, Halide Perovskite Photovoltaics: Background, Status, and Future Prospects, Chem. Rev. 119 (2019) 3036–3103.

DOI: 10.1021/acs.chemrev.8b00539

Google Scholar

[7] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc. 131 (2009) 6050-6051.

DOI: 10.1021/ja809598r

Google Scholar

[8] I. Hany, G. Yang, Q. V. Phan, and H. J. Kim, Thallium lead iodide (TlPbI3) single crystal inorganic perovskite: Electrical and optical characterization for gamma radiation detection, Mater. Sci. Semicond. Process. 121 (2021) 105392.

DOI: 10.1016/j.mssp.2020.105392

Google Scholar

[9] Y. Fujimoto, K. Saeki, T. Yanagida, M. Koshimizu, and K. Asai, Luminescence and scintillation properties of TlCdCl3 crystal, Radiat. Meas. 106 (2017) 151-154.

DOI: 10.1016/j.radmeas.2017.03.034

Google Scholar

[10] Y. Fujimoto, M. Koshimizu, T. Yanagida, G. Okada, K. Saeki, and K. Asai, Thallium magnesium chloride: A high light yield, large effective atomic number, intrinsically activated crystalline scintillator for X-ray and gamma-ray detection, Jpn. J. Appl. Phys. 55 (2016) 090301.

DOI: 10.7567/jjap.55.090301

Google Scholar

[11] F. Hamioud, G. S. AlGhamdi, S. Al-Omari, and A. A. Mubarak, Ab initio investigation of the structural, electronic, magnetic and optical properties of the perovskite TlMnX3 (X = F, Cl) compounds, Int. J. Mod. Phys. B 30 (2016) 1650031.

DOI: 10.1142/s0217979216500314

Google Scholar

[12] S. Khan, S. U. Zaman, R. Ahmad, N. Mehmood, M. Arif, and H. J. Kim, Ab initio investigations of structural, elastic, electronic and optical properties of the fluoroperovskite TIXF3 (X=Ca, Cd, Hg, and Mg) compounds, Mater. Res. Express 6 (2020) 125923.

DOI: 10.1088/2053-1591/ab5e37

Google Scholar

[13] S. U. Zaman, N. Rahman, M. Arif, M. Saqib, M. Husain, E. Bonyah, Z. Shah, S. Zulfiqar, and A. Khan, Ab initio investigation of the physical properties of Tl based chloroperovskites TlXCl3 (X = Ca and Cd), AIP Adv. 11 (2021) 015204.

DOI: 10.1063/5.0034759

Google Scholar

[14] R. Yadav, A. Srivastava, R. Sharma, J. A. Abraham, S. A. Dar, A. K. Mishra, and V. Srivastava, The study of optical and thermoelectric behaviour of thalium based flouropervoskite (TlSiF3) for photovoltaic and renewable energy applications by DFT, J. Solid State Chem. 313 (2022) 123266.

DOI: 10.1016/j.jssc.2022.123266

Google Scholar

[15] M. Sohail, M. Husain, N. Rahman, K. Althubeiti, M. Algethami, A. Ali Khan, A. Iqbal, A. Ullah, A. Khan, and R. Khan, First-principal investigations of electronic, structural, elastic and optical properties of the fluoroperovskite TlLF3 (L = Ca, Cd) compounds for optoelectronic applications, RSC Adv. 12 (2022) 7002-7008.

DOI: 10.1039/d2ra00464j

Google Scholar

[16] S. U. Zaman, S. Khan, N. Mehmood, A. U. Rahman, R. Ahmad, N. Sultan, F. Ullah, and H. J. Kim, Heavy thallium based fluoroperovskite TlAF3 (A = Ge, Sn and Pb) compounds: a computational investigation, Opt. Quantum Electron. 54 (2022) 396.

DOI: 10.1007/s11082-022-03755-z

Google Scholar

[17] M. Husain, N. Rahman, R. Khan, M. Sohail, A. A. Khan, H. O. Elansary, T. K. Z. El-Abedin, E. A. Mahmoud, S. A. M. Abdelmohsen, and A. Khan, Exploring the exemplary structural, electronic, optical, and elastic nature of inorganic ternary cubic XBaF3 (X = Al and Tl) employing the accurate TB-mBJ approach, Semicond. Sci. Technol. 37 (2022) 075004.

DOI: 10.1088/1361-6641/ac6d00

Google Scholar

[18] R. K. Pingak, A DFT study of structural and electronic properties of cubic thallium based fluoroperovskites TlBF3 (Bdouble bondGe,Sn,Pb,Zn,Cd,Hg,Mg,Ca,Sr,Ba), Comput. Condens. Matter 33 (2022) e00747.

DOI: 10.1016/j.cocom.2022.e00747

Google Scholar

[19] R. Yadav, A. Srivastava, J. A. Abraham, R. Sharma, and S. A. Dar, First-principles calculations to investigate structural, electronic, thermoelectric, and optical properties of heavy thallium perovskite TlPbX3 (X = Cl, Br, I), Mater. Sci. Eng. B 283 (2022) 115781.

DOI: 10.1016/j.mseb.2022.115781

Google Scholar

[20] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter 21 (2009) 395502.

DOI: 10.1088/0953-8984/21/39/395502

Google Scholar

[21] A. J. Cohen, P. Mori-Sánchez, and W. Yang, Development of exchange-correlation functionals with minimal many-electron self-interaction error, J. Chem. Phys. 126 (2007) 191109.

DOI: 10.1063/1.2741248

Google Scholar

[22] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[23] J. P. Perdew, M. Ernzerhof, and K. Burke, Rationale for mixing exact exchange with density functional approximations, J. Chem. Phys. 105 (1996) 9982-9985.

DOI: 10.1063/1.472933

Google Scholar

[24] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[25] D. J. Chadi, Special points for Brillouin-zone integrations, Phys. Rev. B 16 (1977) 1746.

DOI: 10.1103/physrevb.16.1746

Google Scholar

[26] A. Marini, C. Hogan, M. Grüning, and D. Varsano, yambo: An ab initio tool for excited state calculations, Comput. Phys. Commun. 180 (2009) 1392-1403.

DOI: 10.1016/j.cpc.2009.02.003

Google Scholar

[27] F. Birch, Finite Elastic Strain of Cubic Crystals, Phys. Rev. 71 (1947) 809.

DOI: 10.1103/physrev.71.809

Google Scholar

[28] D. N. Huntzinger, A. M. Michalak, C. Schwalm, P. Ciais, A. W. King, Y. Fang, K. Schaefer, Y. Wei, R. B. Cook, J. B. Fisher, D. Hayes, M. Huang, A. Ito, A. K. Jain, H. Lei, C. Lu, F. Maignan, J. Mao, N. Parazoo, S. Peng, B. Poulter, D. Ricciuto, X. Shi, H. Tian, W. Wang, N. Zeng and F. Zhao, Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions, Sci. Rep. 7 (2017) 4765.

DOI: 10.1038/s41598-017-03818-2

Google Scholar

[29] S. Bouhmaidi, A. Marjaoui, A. Talbi, M. Zanouni, K. Nouneh, and L. Setti, A DFT study of electronic, optical and thermoelectric properties of Ge-halide perovskites CsGeX3 (X=F, Cl and Br), Comput. Condens. Matter 31 (2022) e00663.

DOI: 10.1016/j.cocom.2022.e00663

Google Scholar

[30] T. C. Jellicoe, J. M. Richter, H. F. J. Glass, M. Tabachnyk, R. Brady, S. E. Dutton, A. Rao, R. H. Friend, D. Credgington, N. C. Greenham, and M. L. Böhm, Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals, J. Am. Chem. Soc. 138 (2016) 2941-2944.

DOI: 10.1021/jacs.5b13470

Google Scholar

[31] H. B. Ozisik, K. Colakoglu, G. Surucu, and H. Ozisik, Structural and lattice dynamical properties of Zintl NaIn and NaTl compounds, Comput. Mater. Sci. 50 (2011) 1070-1076.

DOI: 10.1016/j.commatsci.2010.11.003

Google Scholar

[32] A. H. Reshak and M. Jamal, DFT calculation for elastic constants of orthorhombic structure within WIEN2K code: A new package (ortho-elastic), J. Alloys Compd. 543 (2012) 147-151.

DOI: 10.1016/j.jallcom.2012.07.107

Google Scholar

[33] R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. Sect. A 65 (1952) 349.

Google Scholar

[34] G. Grimvall, Thermophysical Properties of Materials, first ed., Elsevier, 1999.

Google Scholar

[35] S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Lond. Edinb. Dublin Philos. Mag. J. Sci. 45 (1954) 823-843.

DOI: 10.1080/14786440808520496

Google Scholar

[36] A. B. Kuzmenko, Kramers–Kronig constrained variational analysis of optical spectra, Rev. Sci. Instrum. 76 (2005) 083108.

DOI: 10.1063/1.1979470

Google Scholar

[37] D. R. Penn, Wave-Number-Dependent Dielectric Function of Semiconductors, Phys. Rev. 128 (1962) 2093.

DOI: 10.1103/physrev.128.2093

Google Scholar