Predicting the Compressive Strength of Mortar Incorporating Bentonite Using Artificial Neural Networks

Article Preview

Abstract:

Sustainable concrete has become more popular due to supplementary cementitious materials (SCMs) that help achieve sustainability. Despite the well-established benefits of these SCMs, the search for substitute materials continues as they become harder to find and adapt to changes with the industry. Concrete performance may be enhanced using bentonite, a commercially available clay mineral that shows promise as an SCM. In the present work, an Artificial Neural Network (ANN) model was developed to predict the compressive strength of cement-based mortar incorporating bentonite as a SCM, by training it on existing data, allowing for better performance and mix design improvement. A comprehensive experimental database comprising test specimens was established. A critical assessment of the collected experimental data suggested that there are several key parameters governing compressive strength gains. The proposed model's parameters, such as weights, biases, and transfer functions, were effectively transformed into a mathematical model that correlates the compressive strength with the key input parameters. An experimental investigation measuring the impact of treating bentonite at various temperatures on compressive strength was also included in the study.The statistical evaluation results indicated that a three-layered Artificial Neural Network model with different hidden neurons could precisely estimate the compressive strength of mortar mixtures modified with bentonite, showing strong agreement with the experimental results. The mortar's compressive strength may be increased by partially replacing cement with calcined bentonite, especially in the initial stages. The type of bentonite and the intended performance determine the appropriate replacement rate and calcination temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-138

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Cheng, D.M. Reiner, F. Yang, C. Cui, J. Meng, Y. Shan, Y. Liu, S. Tao, D. Guan, Projecting future carbon emissions from cement production in developing countries, Nat. Commun. 14 (2023) 8213.

DOI: 10.1038/s41467-023-43660-x

Google Scholar

[2] M. Alhawat, A. Ashour, G. Yildirim, CO₂ capture and storage for sustainable concrete production, Sustain. Constr. Mater. Struct. (2024) 669-701.

DOI: 10.1016/b978-0-443-15672-4.00022-x

Google Scholar

[3] J. Ahmad, K.J. Kontoleon, M.Z. Al-Mulali, S. Shaik, M. Hechmi El Ouni, M.A. El-Shorbagy, Partial substitution of binding material by bentonite clay (BC) in concrete: a review, Buildings 12 (2022) 634.

DOI: 10.3390/buildings12050634

Google Scholar

[4] D. Borah, H. Nath, H. Saikia, Modification of bentonite clay & its applications: A review, Rev. Inorg. Chem. 42 (2022) 265-282.

DOI: 10.1515/revic-2021-0030

Google Scholar

[5] J.Y. Goo, J.S. Kim, J.S. Kwon, H.Y. Jo, A literature review on studies of bentonite alteration by cement-bentonite interactions, Econ. Environ. Geol. 55 (2022) 219-229.

DOI: 10.9719/eeg.2022.55.3.219

Google Scholar

[6] E. Crespo, D.A. Martín, J.L. Costafreda, Bentonite clays related to volcanosedimentary formations in southeastern Spain: Mineralogical, chemical, and pozzolanic characteristics, Minerals 14 (2024) 814.

DOI: 10.3390/min14080814

Google Scholar

[7] Z. Feng, Z. Zhang, Q. Tang, Y. Zhou, Mechanical properties and microscopic research of different types of bentonite in conjunction with cement and fine sand, Soils Found. 65 (2025) 101573.

DOI: 10.1016/j.sandf.2025.101573

Google Scholar

[8] M. Rehman, M. Yaqub, B. Ali, M.N. Ayaz Khan, M. Fahad, M.M. Abid, A. Gul, The influence of thermo-mechanical activation of bentonite on the mechanical and durability performance of concrete, Appl. Sci. 9 (2019) 5549.

DOI: 10.3390/app9245549

Google Scholar

[9] N. Mesboua, K. Benyounes, S. Kennouche, Y. Ammar, A. Benmounah, H. Kemer, Calcinated bentonite as supplementary cementitious material in cement-based mortar, J. Appl. Eng. Sci. 11 (2021) 23-32.

DOI: 10.2478/jaes-2021-0004

Google Scholar

[10] M. Habib, M. Saad, N. Abbas, Evaluation of mechanical and durability aspects of self-compacting concrete by using thermo-mechanical activation of bentonite, ICEC 2022 22 (2022) 17.

DOI: 10.3390/engproc2022022017

Google Scholar

[11] A.M. Ghrair, A.J. Said, H. Al-Kroom, N. Al Daoud, B. Hanayneh, A. Mhanna, A. Gharaibeh, Utilization of Jordanian bentonite clay in mortar and concrete mixtures, Jordan J. Earth Environ. Sci. 14 (2023) 19-29.

Google Scholar

[12] S. Bueno, E. Durán, B. Gámiz, M.C. Hermosín, Formulating low-cost modified bentonite with natural binders to remove pesticides in a pilot water filter system, J. Environ. Chem. Eng. 9 (2021) 104623.

DOI: 10.1016/j.jece.2020.104623

Google Scholar

[13] J. Mirza, M. Riaz, A. Naseer, F. Rehman, A.N. Khan, Q. Ali, Pakistani bentonite in mortars and concrete as low-cost construction material, Appl. Clay Sci. 45 (2009) 220-226.

DOI: 10.1016/j.clay.2009.06.011

Google Scholar

[14] B. Akbar, M. Alam, S. Ashraf, A. Afzal, A. Ahmad, K. Shahzada, Evaluating the effect of bentonite on strength and durability of high-performance concrete, Int. J. Adv. Struct. Geotech. Eng. 2 (2013) 1-5.

Google Scholar

[15] H.H. Lee, C.W. Wang, Experimental study on cement mortar with bentonite, Adv. Mater. Res. 671-674 (2013) 1741-1744.

DOI: 10.4028/www.scientific.net/amr.671-674.1741

Google Scholar

[16] G.V.K. Reddy, V.R. Rao, M.A.K. Reddy, Experimental investigation of strength parameters of cement and concrete by partial replacement of cement with Indian calcium bentonite, Int. J. Civ. Eng. Technol. 8 (2017).

Google Scholar

[17] M. Ashraf, M.F. Iqbal, M. Rauf, M.U. Ashraf, A. Ulhaq, H. Muhammad, Q.F. Liu, Developing a sustainable concrete incorporating bentonite clay and silica fume: Mechanical and durability performance, J. Clean. Prod. 337 (2022) 130315.

DOI: 10.1016/j.jclepro.2021.130315

Google Scholar

[18] T.A. Fode, Y.A.C. Jande, T. Kivevele, Effects of raw and different calcined bentonite on durability and mechanical properties of cement composite material, Case Stud. Constr. Mater. 20 (2024) e03012.

DOI: 10.1016/j.cscm.2024.e03012

Google Scholar

[19] [28] ASTM C618-12a, Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete, ASTM Int. (2013) 1-5.

DOI: 10.1520/c0618-15

Google Scholar

[20] Ş. Targan, A. Olgun, Y. Erdogan, V. Sevinc, Effects of supplementary cementing materials on the properties of cement and concrete, Cem. Concr. Res. 32 (2002) 1551-1558.

DOI: 10.1016/s0008-8846(02)00831-1

Google Scholar

[21] R. Fernandez, F. Martirena, K.L. Scrivener, The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite, and montmorillonite, Cem. Concr. Res. 41 (2011) 113-122.

DOI: 10.1016/j.cemconres.2010.09.013

Google Scholar

[22] A. Trümer, H.-M. Ludwig, M. Schellhorn, R. Diedel, Effect of a calcined Westerwald bentonite as supplementary cementitious material on the long-term performance of concrete, Appl. Clay Sci. 168 (2019) 36-42.

DOI: 10.1016/j.clay.2018.10.015

Google Scholar

[23] H. Yang, et al., Effects of bentonite on pore structure and permeability of cement mortar, Constr. Build. Mater. 224 (2019) 276-283.

Google Scholar

[24] C.R. Penson, P.B.A.S.C. Eng, Calcined calcium bentonite clay as a partial replacement of Portland cement in mortar, (2019).

Google Scholar

[25] A. Allahverdi, Z. Padar, M. Mahinroosta, Physico-mechanical properties of organo-modified bentonite reinforced cement mortars, Iran. J. Mater. Sci. Eng. 16 (2019) 1-9.

Google Scholar

[26] M. Liu, et al., Influence of various bentonites on the mechanical properties and impermeability of cement mortars, Constr. Build. Mater. 241 (2020) 118015.

DOI: 10.1016/j.conbuildmat.2020.118015

Google Scholar

[27] S.S. Reddy, M.A.K. Reddy, Optimization of calcined bentonite clay utilization in cement mortar using response surface methodology, Int. J. Eng. 34 (2021) 1623-1631.

DOI: 10.5829/ije.2021.34.07a.07

Google Scholar

[28] Gedik, E. and Atmaca, A., 2023. An experimental study investigating the effects of bentonite clay on mechanical and thermal properties of concrete. Construction and Building Materials, 383, p.131279.

DOI: 10.1016/j.conbuildmat.2023.131279

Google Scholar

[29] Y.K. Kong, K. Kurumisawa, Prediction of the drying shrinkage of alkali-activated materials using artificial neural networks, Case Stud. Constr. Mater. 17 (2022) e01166.

DOI: 10.1016/j.cscm.2022.e01166

Google Scholar

[30] W. Li, R. Wang, Q. Ai, Q. Liu, S.X. Lu, Estimation of compressive strength and slump of HPC concrete using neural network coupling with metaheuristic algorithms, J. Intell. Fuzzy Syst. 45 (2023) 577-591.

DOI: 10.3233/jifs-230005

Google Scholar

[31] M. Altamami, M. Mahgub, M. A. Khatab, O. Hassan, Load capacity prediction of simply supported CFRP deep beams using artificial neural networks, AIP Conf. Proc. 3125 (2024) 1.

DOI: 10.1063/5.0215164

Google Scholar

[32] Moradi, M.J., Khaleghi, M., Salimi, J., Farhangi, V. and Ramezanianpour, A.M., 2021. Predicting the compressive strength of concrete containing metakaolin with different properties using ANN. Measurement, 183, p.109790.

DOI: 10.1016/j.measurement.2021.109790

Google Scholar

[33] González-Santamaría, D.E., Justel, A., Fernández, R., Ruiz, A.I., Stavropoulou, A., Rodríguez-Blanco, J.D. and Cuevas, J., 2021. SEM-EDX study of bentonite alteration under the influence of cement alkaline solutions. Applied Clay Science, 212, p.106223.

DOI: 10.1016/j.clay.2021.106223

Google Scholar

[34] S. E. Schulze and J. Rickert, ―Suitability of natural calcined clays as supplementary cementitious material,‖ Cem. Concr. Compos., vol. 95, p.92– 97, Jan. 2019.

DOI: 10.1016/j.cemconcomp.2018.07.006

Google Scholar

[35] C. Vijay, M.A.K. Reddy, Optimization of bentonite-modified cement mortar parameters at elevated temperatures using RSM, IOP Conf. Ser. Mater. Sci. Eng. 1197 (2021) 012040.

DOI: 10.1088/1757-899x/1197/1/012040

Google Scholar

[36] J. Liu, X. Gong, X. He, R. Zhang, and R. Li, ―Experimental Study of Mortar Samples Containing Sodium Bentonite, J. Test. Eval., vol. 48, no. 5, p.20170324, Sep. 2020.

DOI: 10.1520/JTE20170324

Google Scholar

[37] C. Andrade, A. Martínez-Serrano, M.Á. Sanjuán, J.A. Tenorio Ríos, Reduced carbonation, sulfate, and chloride ingress due to the substitution of cement by 10% non-precalcined bentonite, Mater. (Basel) 14 (2021) 51300.

DOI: 10.3390/ma14051300

Google Scholar