[1]
D. Cheng, D.M. Reiner, F. Yang, C. Cui, J. Meng, Y. Shan, Y. Liu, S. Tao, D. Guan, Projecting future carbon emissions from cement production in developing countries, Nat. Commun. 14 (2023) 8213.
DOI: 10.1038/s41467-023-43660-x
Google Scholar
[2]
M. Alhawat, A. Ashour, G. Yildirim, CO₂ capture and storage for sustainable concrete production, Sustain. Constr. Mater. Struct. (2024) 669-701.
DOI: 10.1016/b978-0-443-15672-4.00022-x
Google Scholar
[3]
J. Ahmad, K.J. Kontoleon, M.Z. Al-Mulali, S. Shaik, M. Hechmi El Ouni, M.A. El-Shorbagy, Partial substitution of binding material by bentonite clay (BC) in concrete: a review, Buildings 12 (2022) 634.
DOI: 10.3390/buildings12050634
Google Scholar
[4]
D. Borah, H. Nath, H. Saikia, Modification of bentonite clay & its applications: A review, Rev. Inorg. Chem. 42 (2022) 265-282.
DOI: 10.1515/revic-2021-0030
Google Scholar
[5]
J.Y. Goo, J.S. Kim, J.S. Kwon, H.Y. Jo, A literature review on studies of bentonite alteration by cement-bentonite interactions, Econ. Environ. Geol. 55 (2022) 219-229.
DOI: 10.9719/eeg.2022.55.3.219
Google Scholar
[6]
E. Crespo, D.A. Martín, J.L. Costafreda, Bentonite clays related to volcanosedimentary formations in southeastern Spain: Mineralogical, chemical, and pozzolanic characteristics, Minerals 14 (2024) 814.
DOI: 10.3390/min14080814
Google Scholar
[7]
Z. Feng, Z. Zhang, Q. Tang, Y. Zhou, Mechanical properties and microscopic research of different types of bentonite in conjunction with cement and fine sand, Soils Found. 65 (2025) 101573.
DOI: 10.1016/j.sandf.2025.101573
Google Scholar
[8]
M. Rehman, M. Yaqub, B. Ali, M.N. Ayaz Khan, M. Fahad, M.M. Abid, A. Gul, The influence of thermo-mechanical activation of bentonite on the mechanical and durability performance of concrete, Appl. Sci. 9 (2019) 5549.
DOI: 10.3390/app9245549
Google Scholar
[9]
N. Mesboua, K. Benyounes, S. Kennouche, Y. Ammar, A. Benmounah, H. Kemer, Calcinated bentonite as supplementary cementitious material in cement-based mortar, J. Appl. Eng. Sci. 11 (2021) 23-32.
DOI: 10.2478/jaes-2021-0004
Google Scholar
[10]
M. Habib, M. Saad, N. Abbas, Evaluation of mechanical and durability aspects of self-compacting concrete by using thermo-mechanical activation of bentonite, ICEC 2022 22 (2022) 17.
DOI: 10.3390/engproc2022022017
Google Scholar
[11]
A.M. Ghrair, A.J. Said, H. Al-Kroom, N. Al Daoud, B. Hanayneh, A. Mhanna, A. Gharaibeh, Utilization of Jordanian bentonite clay in mortar and concrete mixtures, Jordan J. Earth Environ. Sci. 14 (2023) 19-29.
Google Scholar
[12]
S. Bueno, E. Durán, B. Gámiz, M.C. Hermosín, Formulating low-cost modified bentonite with natural binders to remove pesticides in a pilot water filter system, J. Environ. Chem. Eng. 9 (2021) 104623.
DOI: 10.1016/j.jece.2020.104623
Google Scholar
[13]
J. Mirza, M. Riaz, A. Naseer, F. Rehman, A.N. Khan, Q. Ali, Pakistani bentonite in mortars and concrete as low-cost construction material, Appl. Clay Sci. 45 (2009) 220-226.
DOI: 10.1016/j.clay.2009.06.011
Google Scholar
[14]
B. Akbar, M. Alam, S. Ashraf, A. Afzal, A. Ahmad, K. Shahzada, Evaluating the effect of bentonite on strength and durability of high-performance concrete, Int. J. Adv. Struct. Geotech. Eng. 2 (2013) 1-5.
Google Scholar
[15]
H.H. Lee, C.W. Wang, Experimental study on cement mortar with bentonite, Adv. Mater. Res. 671-674 (2013) 1741-1744.
DOI: 10.4028/www.scientific.net/amr.671-674.1741
Google Scholar
[16]
G.V.K. Reddy, V.R. Rao, M.A.K. Reddy, Experimental investigation of strength parameters of cement and concrete by partial replacement of cement with Indian calcium bentonite, Int. J. Civ. Eng. Technol. 8 (2017).
Google Scholar
[17]
M. Ashraf, M.F. Iqbal, M. Rauf, M.U. Ashraf, A. Ulhaq, H. Muhammad, Q.F. Liu, Developing a sustainable concrete incorporating bentonite clay and silica fume: Mechanical and durability performance, J. Clean. Prod. 337 (2022) 130315.
DOI: 10.1016/j.jclepro.2021.130315
Google Scholar
[18]
T.A. Fode, Y.A.C. Jande, T. Kivevele, Effects of raw and different calcined bentonite on durability and mechanical properties of cement composite material, Case Stud. Constr. Mater. 20 (2024) e03012.
DOI: 10.1016/j.cscm.2024.e03012
Google Scholar
[19]
[28] ASTM C618-12a, Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete, ASTM Int. (2013) 1-5.
DOI: 10.1520/c0618-15
Google Scholar
[20]
Ş. Targan, A. Olgun, Y. Erdogan, V. Sevinc, Effects of supplementary cementing materials on the properties of cement and concrete, Cem. Concr. Res. 32 (2002) 1551-1558.
DOI: 10.1016/s0008-8846(02)00831-1
Google Scholar
[21]
R. Fernandez, F. Martirena, K.L. Scrivener, The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite, and montmorillonite, Cem. Concr. Res. 41 (2011) 113-122.
DOI: 10.1016/j.cemconres.2010.09.013
Google Scholar
[22]
A. Trümer, H.-M. Ludwig, M. Schellhorn, R. Diedel, Effect of a calcined Westerwald bentonite as supplementary cementitious material on the long-term performance of concrete, Appl. Clay Sci. 168 (2019) 36-42.
DOI: 10.1016/j.clay.2018.10.015
Google Scholar
[23]
H. Yang, et al., Effects of bentonite on pore structure and permeability of cement mortar, Constr. Build. Mater. 224 (2019) 276-283.
Google Scholar
[24]
C.R. Penson, P.B.A.S.C. Eng, Calcined calcium bentonite clay as a partial replacement of Portland cement in mortar, (2019).
Google Scholar
[25]
A. Allahverdi, Z. Padar, M. Mahinroosta, Physico-mechanical properties of organo-modified bentonite reinforced cement mortars, Iran. J. Mater. Sci. Eng. 16 (2019) 1-9.
Google Scholar
[26]
M. Liu, et al., Influence of various bentonites on the mechanical properties and impermeability of cement mortars, Constr. Build. Mater. 241 (2020) 118015.
DOI: 10.1016/j.conbuildmat.2020.118015
Google Scholar
[27]
S.S. Reddy, M.A.K. Reddy, Optimization of calcined bentonite clay utilization in cement mortar using response surface methodology, Int. J. Eng. 34 (2021) 1623-1631.
DOI: 10.5829/ije.2021.34.07a.07
Google Scholar
[28]
Gedik, E. and Atmaca, A., 2023. An experimental study investigating the effects of bentonite clay on mechanical and thermal properties of concrete. Construction and Building Materials, 383, p.131279.
DOI: 10.1016/j.conbuildmat.2023.131279
Google Scholar
[29]
Y.K. Kong, K. Kurumisawa, Prediction of the drying shrinkage of alkali-activated materials using artificial neural networks, Case Stud. Constr. Mater. 17 (2022) e01166.
DOI: 10.1016/j.cscm.2022.e01166
Google Scholar
[30]
W. Li, R. Wang, Q. Ai, Q. Liu, S.X. Lu, Estimation of compressive strength and slump of HPC concrete using neural network coupling with metaheuristic algorithms, J. Intell. Fuzzy Syst. 45 (2023) 577-591.
DOI: 10.3233/jifs-230005
Google Scholar
[31]
M. Altamami, M. Mahgub, M. A. Khatab, O. Hassan, Load capacity prediction of simply supported CFRP deep beams using artificial neural networks, AIP Conf. Proc. 3125 (2024) 1.
DOI: 10.1063/5.0215164
Google Scholar
[32]
Moradi, M.J., Khaleghi, M., Salimi, J., Farhangi, V. and Ramezanianpour, A.M., 2021. Predicting the compressive strength of concrete containing metakaolin with different properties using ANN. Measurement, 183, p.109790.
DOI: 10.1016/j.measurement.2021.109790
Google Scholar
[33]
González-Santamaría, D.E., Justel, A., Fernández, R., Ruiz, A.I., Stavropoulou, A., Rodríguez-Blanco, J.D. and Cuevas, J., 2021. SEM-EDX study of bentonite alteration under the influence of cement alkaline solutions. Applied Clay Science, 212, p.106223.
DOI: 10.1016/j.clay.2021.106223
Google Scholar
[34]
S. E. Schulze and J. Rickert, ―Suitability of natural calcined clays as supplementary cementitious material,‖ Cem. Concr. Compos., vol. 95, p.92– 97, Jan. 2019.
DOI: 10.1016/j.cemconcomp.2018.07.006
Google Scholar
[35]
C. Vijay, M.A.K. Reddy, Optimization of bentonite-modified cement mortar parameters at elevated temperatures using RSM, IOP Conf. Ser. Mater. Sci. Eng. 1197 (2021) 012040.
DOI: 10.1088/1757-899x/1197/1/012040
Google Scholar
[36]
J. Liu, X. Gong, X. He, R. Zhang, and R. Li, ―Experimental Study of Mortar Samples Containing Sodium Bentonite, J. Test. Eval., vol. 48, no. 5, p.20170324, Sep. 2020.
DOI: 10.1520/JTE20170324
Google Scholar
[37]
C. Andrade, A. Martínez-Serrano, M.Á. Sanjuán, J.A. Tenorio Ríos, Reduced carbonation, sulfate, and chloride ingress due to the substitution of cement by 10% non-precalcined bentonite, Mater. (Basel) 14 (2021) 51300.
DOI: 10.3390/ma14051300
Google Scholar