[1]
K. W. Bandilla, "Carbon Capture and Storage," in Future Energy, Elsevier, 2020, p.669–692.
DOI: 10.1016/B978-0-08-102886-5.00031-1
Google Scholar
[2]
T. Ajayi, J. S. Gomes, and A. Bera, "A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches," Pet Sci, vol. 16, no. 5, p.1028–1063, Oct. 2019.
DOI: 10.1007/s12182-019-0340-8
Google Scholar
[3]
M. Ali, N. K. Jha, N. Pal, A. Keshavarz, H. Hoteit, and M. Sarmadivaleh, "Recent advances in carbon dioxide geological storage, experimental procedures, influencing parameters, and future outlook," Earth Sci Rev, vol. 225, p.103895, Feb. 2022.
DOI: 10.1016/j.earscirev.2021.103895
Google Scholar
[4]
Y. Song, S. Jun, Y. Na, K. Kim, Y. Jang, and J. Wang, "Geomechanical challenges during geological CO2 storage: A review," Chemical Engineering Journal, vol. 456, p.140968, Jan. 2023.
DOI: 10.1016/j.cej.2022.140968
Google Scholar
[5]
M. J. Khan, S. M. Mahmood, F. S. Alakbari, N. A. Siddiqui, S. Ridha, and M. U. Shafiq, "Rock Wettability and Its Implication for Caprock Integrity in CO 2 –Brine Systems: A Comprehensive Review," Energy & Fuels, vol. 38, no. 21, p.19966–19991, Nov. 2024.
DOI: 10.1021/acs.energyfuels.4c02736
Google Scholar
[6]
S. P. Rigby, A. Alsayah, and R. Seely, "Impact of Exposure to Supercritical Carbon Dioxide on Reservoir Caprocks and Inter-Layers during Sequestration," Energies (Basel), vol. 15, no. 20, p.7538, Oct. 2022.
DOI: 10.3390/en15207538
Google Scholar
[7]
R. A. D. P. Dilshan, M. S. A. Perera, and S. K. Matthai, "Effect of mechanical weakening and crack formation on caprock integrity during underground hydrogen storage in depleted gas reservoirs – A comprehensive review," Fuel, vol. 371, p.131893, Sep. 2024.
DOI: 10.1016/j.fuel.2024.131893
Google Scholar
[8]
D. W. Jayasekara, P. G. Ranjith, W. A. M. Wanniarachchi, and T. D. Rathnaweera, "Understanding the chemico-mineralogical changes of caprock sealing in deep saline CO2 sequestration environments: A review study," J Supercrit Fluids, vol. 161, p.104819, Jul. 2020.
DOI: 10.1016/j.supflu.2020.104819
Google Scholar
[9]
B. Chen, Q. Li, Y. Tan, T. Yu, X. Li, and X. Li, "Experimental measurements and characterization models of caprock breakthrough pressure for CO2 geological storage," Earth Sci Rev, vol. 252, p.104732, May 2024.
DOI: 10.1016/j.earscirev.2024.104732
Google Scholar
[10]
S. Jia, C. Wen, X. Fu, T. Liu, and Z. Xi, "A Caprock Evaluation Methodology for Underground Gas Storage in a Deep Depleted Gas Reservoir: A Case Study for the X9 Lithologic Trap of Langgu Sag, Bohai Bay Basin, China," Energies (Basel), vol. 15, no. 12, p.4351, Jun. 2022.
DOI: 10.3390/en15124351
Google Scholar
[11]
H. R. Grunau, "A WORLDWIDE LOOK AT THE CAP‐ROCK PROBLEM," Journal of Petroleum Geology, vol. 10, no. 3, p.245–265, Jul. 1987.
DOI: 10.1111/j.1747-5457.1987.tb00945.x
Google Scholar
[12]
A. Amann-Hildenbrand, P. Bertier, A. Busch, and B. M. Krooss, "Experimental investigation of the sealing capacity of generic clay-rich caprocks," International Journal of Greenhouse Gas Control, vol. 19, p.620–641, Nov. 2013.
DOI: 10.1016/j.ijggc.2013.01.040
Google Scholar
[13]
S. Schlömer and B. M. Krooss, "Experimental characterisation of the hydrocarbon sealing efficiency of cap rocks," Mar Pet Geol, vol. 14, no. 5, p.565–580, Aug. 1997.
DOI: 10.1016/S0264-8172(97)00022-6
Google Scholar
[14]
M. Nooraiepour, "Clay mineral type and content control properties of fine-grained CO2 caprocks 3-Laboratory insights from strongly-swelling and non-swelling clay-quartz mixtures 4 5."
DOI: 10.31223/x5906g
Google Scholar
[15]
C. Ma et al., "Quantitative Relationship Between Argillaceous Caprock Thickness and Maximum Sealed Hydrocarbon Column Height," Natural Resources Research, vol. 29, no. 3, p.2033–2049, Jun. 2020.
DOI: 10.1007/s11053-019-09554-w
Google Scholar
[16]
A. N. Moiseyev, "Hydrologic properties of shale and related argillaceous rocks," Livermore, CA (United States), Nov. 1979.
DOI: 10.2172/5608692
Google Scholar
[17]
B. Storsved and A. J. Valocchi, "CAPROCK CHARACTERISTICS AND UNCERTAINTIES IN GEOLOGICAL CARBON SEQUESTRATION IN THE ILLINOIS BASIN."
Google Scholar
[18]
M. M. Smith, Y. Sholokhova, Y. Hao, and S. A. Carroll, "Evaporite Caprock Integrity: An Experimental Study of Reactive Mineralogy and Pore-Scale Heterogeneity during Brine-CO 2 Exposure," Environ Sci Technol, vol. 47, no. 1, p.262–268, Jan. 2013.
DOI: 10.1021/es3012723
Google Scholar
[19]
Lerer and Kevin, "Gypsum, Calcite, and Dolomite Caprock Fabrics and Geochemistry from the Gypsum Valley Salt Diapir, Paradox Basin, Southwestern Colorado," ETD Collection for University of Texas, El Paso, 2017.
Google Scholar
[20]
K. H. Caesar, J. R. Kyle, T. W. Lyons, A. Tripati, and S. J. Loyd, "Carbonate formation in salt dome cap rocks by microbial anaerobic oxidation of methane," Nat Commun, vol. 10, no. 1, p.808, Feb. 2019.
DOI: 10.1038/s41467-019-08687-z
Google Scholar
[21]
H. Jedli, H. Hedfi, A. Jbara, S. Bouzgarrou, and K. Slimi, "Mineralogical and Geochemical Characteristics of Caprock Formations Used for Storage and Sequestration of Carbon Dioxide," Journal of Minerals and Materials Characterization and Engineering, vol. 03, no. 05, p.409–419, 2015.
DOI: 10.4236/jmmce.2015.35043
Google Scholar
[22]
J. Zhang, "Effective stress, porosity, velocity and abnormal pore pressure prediction accounting for compaction disequilibrium and unloading," Mar Pet Geol, vol. 45, p.2–11, Aug. 2013.
DOI: 10.1016/j.marpetgeo.2013.04.007
Google Scholar
[23]
J. Sharifi, "Evaluation of reservoir subsidence due to hydrocarbon production based on seismic data," J Pet Explor Prod Technol, vol. 13, no. 12, p.2439–2456, Dec. 2023.
DOI: 10.1007/s13202-023-01678-3
Google Scholar
[24]
E. Fjær, R. M. Holt, P. Horsrud, A. M. Raaen, and R. Risnes, "Chapter 2 Failure mechanics," 2008, p.55–102.
DOI: 10.1016/S0376-7361(07)53002-5
Google Scholar
[25]
"Reservoir Geomechanics."
Google Scholar
[26]
R. Shukla, P. G. Ranjith, S. K. Choi, and A. Haque, "Study of Caprock Integrity in Geosequestration of Carbon Dioxide," International Journal of Geomechanics, vol. 11, no. 4, p.294–301, Aug. 2011.
DOI: 10.1061/(ASCE)GM.1943-5622.0000015
Google Scholar
[27]
S. Goodarzi, A. Settari, M. Zoback, and D. W., "Thermal Effects on Shear Fracturing and Injectivity During CO2 Storage," in Effective and Sustainable Hydraulic Fracturing, InTech, 2013.
DOI: 10.5772/56311
Google Scholar
[28]
B. Orlic, J. ter Heege, and B. Wassing, "Assessing the integrity of fault- and top seals at CO2 storage sites," Energy Procedia, vol. 4, p.4798–4805, 2011.
DOI: 10.1016/j.egypro.2011.02.445
Google Scholar
[29]
A. L. Nahm, "Normal Fault," in Encyclopedia of Planetary Landforms, New York, NY: Springer New York, 2015, p.1458–1466.
DOI: 10.1007/978-1-4614-3134-3_519
Google Scholar
[30]
B. Singh and R. K. Goel, "In Situ Stresses," in Engineering Rock Mass Classification, Elsevier, 2011, p.345–350.
DOI: 10.1016/B978-0-12-385878-8.00028-8
Google Scholar
[31]
M. Marghany, "Structural geology of mineral, oil and gas explorations," in Advanced Algorithms for Mineral and Hydrocarbon Exploration Using Synthetic Aperture Radar, Elsevier, 2022, p.31–79.
DOI: 10.1016/B978-0-12-821796-2.00003-3
Google Scholar
[32]
S. Qu, "Characteristics and Geological Significance of Strike-slip Faults," IOP Conf Ser Earth Environ Sci, vol. 384, p.012162, Nov. 2019.
DOI: 10.1088/1755-1315/384/1/012162
Google Scholar
[33]
V. Vilarrasa, R. Y. Makhnenko, and L. Laloui, "Potential for Fault Reactivation Due to CO2 Injection in a Semi-Closed Saline Aquifer," Energy Procedia, vol. 114, p.3282–3290, Jul. 2017.
DOI: 10.1016/j.egypro.2017.03.1460
Google Scholar
[34]
J. F. Labuz and A. Zang, "Mohr–Coulomb Failure Criterion," Rock Mech Rock Eng, vol. 45, no. 6, p.975–979, Nov. 2012.
DOI: 10.1007/s00603-012-0281-7
Google Scholar
[35]
D. Cen and D. Huang, "Direct Shear Tests of Sandstone Under Constant Normal Tensile Stress Condition Using a Simple Auxiliary Device," Rock Mech Rock Eng, vol. 50, no. 6, p.1425–1438, Jun. 2017.
DOI: 10.1007/s00603-017-1179-1
Google Scholar
[36]
K. Adisornsupawat and P. Sooksawat, "Dynamic Response of Rock on Potential Leakage of Fault and Cap Rock: A Case Study From SEA Field," in 55th U.S. Rock Mechanics/Geomechanics Symposium, 2021.
Google Scholar
[37]
H. Sun, C. jia, F. Xiong, and Z. Wu, "Numerical modelling of CO2 leakage through fractured caprock using an extended numerical manifold method," Eng Anal Bound Elem, vol. 162, p.327–336, May 2024.
DOI: 10.1016/j.enganabound.2024.02.013
Google Scholar
[38]
G. T. Eigestad, H. K. Dahle, B. Hellevang, F. Riis, W. T. Johansen, and E. Øian, "Geological modeling and simulation of CO2 injection in the Johansen formation," Comput Geosci, vol. 13, no. 4, p.435–450, Dec. 2009.
DOI: 10.1007/s10596-009-9153-y
Google Scholar
[39]
B. Norden and P. Frykman, "Geological modelling of the Triassic Stuttgart Formation at the Ketzin CO2 storage site, Germany," International Journal of Greenhouse Gas Control, vol. 19, p.756–774, Nov. 2013.
DOI: 10.1016/j.ijggc.2013.04.019
Google Scholar
[40]
S. Martens et al., "CO2 Storage at the Ketzin Pilot Site, Germany: Fourth Year of Injection, Monitoring, Modelling and Verification," Energy Procedia, vol. 37, p.6434–6443, 2013.
DOI: 10.1016/j.egypro.2013.06.573
Google Scholar
[41]
G. T. Eigestad, H. K. Dahle, B. Hellevang, F. Riis, W. T. Johansen, and E. Øian, "Geological modeling and simulation of CO2 injection in the Johansen formation," Comput Geosci, vol. 13, no. 4, p.435–450, Dec. 2009.
DOI: 10.1007/s10596-009-9153-y
Google Scholar
[42]
C. Khazaei and R. Chalaturnyk, "A Reservoir–Geomechanical Model to Study the Likelihood of Tensile and Shear Failure in the Caprock of Weyburn CCS Project with Regard to Interpretation of Microseismic Data," Geotechnical and Geological Engineering, vol. 35, no. 6, p.2571–2595, Dec. 2017.
DOI: 10.1007/s10706-017-0262-4
Google Scholar