Assessment of Caprock Integrity Utilising Rock Failure Prediction Methodology for Carbon Capture and Storage (CCS): A Review

Article Preview

Abstract:

This paper reviews the advancement in assessing caprock failure for Carbon Capture and Storage (CCS). Caprock plays a pivotal role in structural trapping as it acts as a seal to prevent carbon dioxide (CO2) leakage. However, when a substantial volume of CO2 is injected into the geological formation, the risk of shear failure associated with certain fractures and faults increases, potentially leading to CO2 escaping into the atmosphere. Such an outcome directly contradicts the fundamental purpose of CCS, which aims to securely contain CO2 and prevent its release into the atmosphere, thereby mitigating its impact on climate change. The review highlights Mohr-Coulomb criterion as rock failure prediction methodology to facilitate predict caprock behavior under pressure. This review has identified a gap in understanding the mechanism of structural trapping, particularly on caprock integrity for an effective CCS implementation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-47

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. W. Bandilla, "Carbon Capture and Storage," in Future Energy, Elsevier, 2020, p.669–692.

DOI: 10.1016/B978-0-08-102886-5.00031-1

Google Scholar

[2] T. Ajayi, J. S. Gomes, and A. Bera, "A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches," Pet Sci, vol. 16, no. 5, p.1028–1063, Oct. 2019.

DOI: 10.1007/s12182-019-0340-8

Google Scholar

[3] M. Ali, N. K. Jha, N. Pal, A. Keshavarz, H. Hoteit, and M. Sarmadivaleh, "Recent advances in carbon dioxide geological storage, experimental procedures, influencing parameters, and future outlook," Earth Sci Rev, vol. 225, p.103895, Feb. 2022.

DOI: 10.1016/j.earscirev.2021.103895

Google Scholar

[4] Y. Song, S. Jun, Y. Na, K. Kim, Y. Jang, and J. Wang, "Geomechanical challenges during geological CO2 storage: A review," Chemical Engineering Journal, vol. 456, p.140968, Jan. 2023.

DOI: 10.1016/j.cej.2022.140968

Google Scholar

[5] M. J. Khan, S. M. Mahmood, F. S. Alakbari, N. A. Siddiqui, S. Ridha, and M. U. Shafiq, "Rock Wettability and Its Implication for Caprock Integrity in CO 2 –Brine Systems: A Comprehensive Review," Energy & Fuels, vol. 38, no. 21, p.19966–19991, Nov. 2024.

DOI: 10.1021/acs.energyfuels.4c02736

Google Scholar

[6] S. P. Rigby, A. Alsayah, and R. Seely, "Impact of Exposure to Supercritical Carbon Dioxide on Reservoir Caprocks and Inter-Layers during Sequestration," Energies (Basel), vol. 15, no. 20, p.7538, Oct. 2022.

DOI: 10.3390/en15207538

Google Scholar

[7] R. A. D. P. Dilshan, M. S. A. Perera, and S. K. Matthai, "Effect of mechanical weakening and crack formation on caprock integrity during underground hydrogen storage in depleted gas reservoirs – A comprehensive review," Fuel, vol. 371, p.131893, Sep. 2024.

DOI: 10.1016/j.fuel.2024.131893

Google Scholar

[8] D. W. Jayasekara, P. G. Ranjith, W. A. M. Wanniarachchi, and T. D. Rathnaweera, "Understanding the chemico-mineralogical changes of caprock sealing in deep saline CO2 sequestration environments: A review study," J Supercrit Fluids, vol. 161, p.104819, Jul. 2020.

DOI: 10.1016/j.supflu.2020.104819

Google Scholar

[9] B. Chen, Q. Li, Y. Tan, T. Yu, X. Li, and X. Li, "Experimental measurements and characterization models of caprock breakthrough pressure for CO2 geological storage," Earth Sci Rev, vol. 252, p.104732, May 2024.

DOI: 10.1016/j.earscirev.2024.104732

Google Scholar

[10] S. Jia, C. Wen, X. Fu, T. Liu, and Z. Xi, "A Caprock Evaluation Methodology for Underground Gas Storage in a Deep Depleted Gas Reservoir: A Case Study for the X9 Lithologic Trap of Langgu Sag, Bohai Bay Basin, China," Energies (Basel), vol. 15, no. 12, p.4351, Jun. 2022.

DOI: 10.3390/en15124351

Google Scholar

[11] H. R. Grunau, "A WORLDWIDE LOOK AT THE CAP‐ROCK PROBLEM," Journal of Petroleum Geology, vol. 10, no. 3, p.245–265, Jul. 1987.

DOI: 10.1111/j.1747-5457.1987.tb00945.x

Google Scholar

[12] A. Amann-Hildenbrand, P. Bertier, A. Busch, and B. M. Krooss, "Experimental investigation of the sealing capacity of generic clay-rich caprocks," International Journal of Greenhouse Gas Control, vol. 19, p.620–641, Nov. 2013.

DOI: 10.1016/j.ijggc.2013.01.040

Google Scholar

[13] S. Schlömer and B. M. Krooss, "Experimental characterisation of the hydrocarbon sealing efficiency of cap rocks," Mar Pet Geol, vol. 14, no. 5, p.565–580, Aug. 1997.

DOI: 10.1016/S0264-8172(97)00022-6

Google Scholar

[14] M. Nooraiepour, "Clay mineral type and content control properties of fine-grained CO2 caprocks 3-Laboratory insights from strongly-swelling and non-swelling clay-quartz mixtures 4 5."

DOI: 10.31223/x5906g

Google Scholar

[15] C. Ma et al., "Quantitative Relationship Between Argillaceous Caprock Thickness and Maximum Sealed Hydrocarbon Column Height," Natural Resources Research, vol. 29, no. 3, p.2033–2049, Jun. 2020.

DOI: 10.1007/s11053-019-09554-w

Google Scholar

[16] A. N. Moiseyev, "Hydrologic properties of shale and related argillaceous rocks," Livermore, CA (United States), Nov. 1979.

DOI: 10.2172/5608692

Google Scholar

[17] B. Storsved and A. J. Valocchi, "CAPROCK CHARACTERISTICS AND UNCERTAINTIES IN GEOLOGICAL CARBON SEQUESTRATION IN THE ILLINOIS BASIN."

Google Scholar

[18] M. M. Smith, Y. Sholokhova, Y. Hao, and S. A. Carroll, "Evaporite Caprock Integrity: An Experimental Study of Reactive Mineralogy and Pore-Scale Heterogeneity during Brine-CO 2 Exposure," Environ Sci Technol, vol. 47, no. 1, p.262–268, Jan. 2013.

DOI: 10.1021/es3012723

Google Scholar

[19] Lerer and Kevin, "Gypsum, Calcite, and Dolomite Caprock Fabrics and Geochemistry from the Gypsum Valley Salt Diapir, Paradox Basin, Southwestern Colorado," ETD Collection for University of Texas, El Paso, 2017.

Google Scholar

[20] K. H. Caesar, J. R. Kyle, T. W. Lyons, A. Tripati, and S. J. Loyd, "Carbonate formation in salt dome cap rocks by microbial anaerobic oxidation of methane," Nat Commun, vol. 10, no. 1, p.808, Feb. 2019.

DOI: 10.1038/s41467-019-08687-z

Google Scholar

[21] H. Jedli, H. Hedfi, A. Jbara, S. Bouzgarrou, and K. Slimi, "Mineralogical and Geochemical Characteristics of Caprock Formations Used for Storage and Sequestration of Carbon Dioxide," Journal of Minerals and Materials Characterization and Engineering, vol. 03, no. 05, p.409–419, 2015.

DOI: 10.4236/jmmce.2015.35043

Google Scholar

[22] J. Zhang, "Effective stress, porosity, velocity and abnormal pore pressure prediction accounting for compaction disequilibrium and unloading," Mar Pet Geol, vol. 45, p.2–11, Aug. 2013.

DOI: 10.1016/j.marpetgeo.2013.04.007

Google Scholar

[23] J. Sharifi, "Evaluation of reservoir subsidence due to hydrocarbon production based on seismic data," J Pet Explor Prod Technol, vol. 13, no. 12, p.2439–2456, Dec. 2023.

DOI: 10.1007/s13202-023-01678-3

Google Scholar

[24] E. Fjær, R. M. Holt, P. Horsrud, A. M. Raaen, and R. Risnes, "Chapter 2 Failure mechanics," 2008, p.55–102.

DOI: 10.1016/S0376-7361(07)53002-5

Google Scholar

[25] "Reservoir Geomechanics."

Google Scholar

[26] R. Shukla, P. G. Ranjith, S. K. Choi, and A. Haque, "Study of Caprock Integrity in Geosequestration of Carbon Dioxide," International Journal of Geomechanics, vol. 11, no. 4, p.294–301, Aug. 2011.

DOI: 10.1061/(ASCE)GM.1943-5622.0000015

Google Scholar

[27] S. Goodarzi, A. Settari, M. Zoback, and D. W., "Thermal Effects on Shear Fracturing and Injectivity During CO2 Storage," in Effective and Sustainable Hydraulic Fracturing, InTech, 2013.

DOI: 10.5772/56311

Google Scholar

[28] B. Orlic, J. ter Heege, and B. Wassing, "Assessing the integrity of fault- and top seals at CO2 storage sites," Energy Procedia, vol. 4, p.4798–4805, 2011.

DOI: 10.1016/j.egypro.2011.02.445

Google Scholar

[29] A. L. Nahm, "Normal Fault," in Encyclopedia of Planetary Landforms, New York, NY: Springer New York, 2015, p.1458–1466.

DOI: 10.1007/978-1-4614-3134-3_519

Google Scholar

[30] B. Singh and R. K. Goel, "In Situ Stresses," in Engineering Rock Mass Classification, Elsevier, 2011, p.345–350.

DOI: 10.1016/B978-0-12-385878-8.00028-8

Google Scholar

[31] M. Marghany, "Structural geology of mineral, oil and gas explorations," in Advanced Algorithms for Mineral and Hydrocarbon Exploration Using Synthetic Aperture Radar, Elsevier, 2022, p.31–79.

DOI: 10.1016/B978-0-12-821796-2.00003-3

Google Scholar

[32] S. Qu, "Characteristics and Geological Significance of Strike-slip Faults," IOP Conf Ser Earth Environ Sci, vol. 384, p.012162, Nov. 2019.

DOI: 10.1088/1755-1315/384/1/012162

Google Scholar

[33] V. Vilarrasa, R. Y. Makhnenko, and L. Laloui, "Potential for Fault Reactivation Due to CO2 Injection in a Semi-Closed Saline Aquifer," Energy Procedia, vol. 114, p.3282–3290, Jul. 2017.

DOI: 10.1016/j.egypro.2017.03.1460

Google Scholar

[34] J. F. Labuz and A. Zang, "Mohr–Coulomb Failure Criterion," Rock Mech Rock Eng, vol. 45, no. 6, p.975–979, Nov. 2012.

DOI: 10.1007/s00603-012-0281-7

Google Scholar

[35] D. Cen and D. Huang, "Direct Shear Tests of Sandstone Under Constant Normal Tensile Stress Condition Using a Simple Auxiliary Device," Rock Mech Rock Eng, vol. 50, no. 6, p.1425–1438, Jun. 2017.

DOI: 10.1007/s00603-017-1179-1

Google Scholar

[36] K. Adisornsupawat and P. Sooksawat, "Dynamic Response of Rock on Potential Leakage of Fault and Cap Rock: A Case Study From SEA Field," in 55th U.S. Rock Mechanics/Geomechanics Symposium, 2021.

Google Scholar

[37] H. Sun, C. jia, F. Xiong, and Z. Wu, "Numerical modelling of CO2 leakage through fractured caprock using an extended numerical manifold method," Eng Anal Bound Elem, vol. 162, p.327–336, May 2024.

DOI: 10.1016/j.enganabound.2024.02.013

Google Scholar

[38] G. T. Eigestad, H. K. Dahle, B. Hellevang, F. Riis, W. T. Johansen, and E. Øian, "Geological modeling and simulation of CO2 injection in the Johansen formation," Comput Geosci, vol. 13, no. 4, p.435–450, Dec. 2009.

DOI: 10.1007/s10596-009-9153-y

Google Scholar

[39] B. Norden and P. Frykman, "Geological modelling of the Triassic Stuttgart Formation at the Ketzin CO2 storage site, Germany," International Journal of Greenhouse Gas Control, vol. 19, p.756–774, Nov. 2013.

DOI: 10.1016/j.ijggc.2013.04.019

Google Scholar

[40] S. Martens et al., "CO2 Storage at the Ketzin Pilot Site, Germany: Fourth Year of Injection, Monitoring, Modelling and Verification," Energy Procedia, vol. 37, p.6434–6443, 2013.

DOI: 10.1016/j.egypro.2013.06.573

Google Scholar

[41] G. T. Eigestad, H. K. Dahle, B. Hellevang, F. Riis, W. T. Johansen, and E. Øian, "Geological modeling and simulation of CO2 injection in the Johansen formation," Comput Geosci, vol. 13, no. 4, p.435–450, Dec. 2009.

DOI: 10.1007/s10596-009-9153-y

Google Scholar

[42] C. Khazaei and R. Chalaturnyk, "A Reservoir–Geomechanical Model to Study the Likelihood of Tensile and Shear Failure in the Caprock of Weyburn CCS Project with Regard to Interpretation of Microseismic Data," Geotechnical and Geological Engineering, vol. 35, no. 6, p.2571–2595, Dec. 2017.

DOI: 10.1007/s10706-017-0262-4

Google Scholar