Hydrothermal Synthesis of SnO2 Doped NiO Nanoparticles for Acute Detection of Ethanol Gas

Article Preview

Abstract:

The detection of ethanol (C2H6O), a toxic and hazardous gas, is important for environmental monitoring and industrial safety. This study synthesised a SnO2-doped NiO (SnO2-NiO) heterojunction via a hydrothermal method for high-performance ethanol gas sensing applications. The thick films of synthesized materials were developed by using the screen printing technique. In this work, SnO2 is used as a dopant while NiO is base material. The concentration of SnO2 is varied from 0.1 N, 0.3 N, 0.5 N, to 0.7 N in the NiO during synthesis. The nanostructure leverages the superior gas-sensing properties of the n-type semiconducting behavior of SnO₂ and the p-type semiconducting behavior of NiO, forming an efficient p-n heterojunction interface. The synthesized material was characterized using X-ray diffraction (XRD), TEM (Transmission Electron Microscopy), field emission scanning electron microscopy (FESEM), and energy dispersive spectroscopy (EDS) to confirm the formation of the heterojunction and analyze its morphology and elemental composition. Gas sensing examinations demonstrated that the SnO2-doped NiO heterojunction exhibited excellent selectivity (86.74%) and sensitivity towards ethanol at 150°C operating temperatures, with rapid response and recovery times. The enhanced gas-sensing performance is attributed to the synergistic effects between SnO2 and NiO, which promote electron transfer and improve the interaction with ethanol gas molecules. This work highlights the potential of SnO2-doped NiO heterojunction in developing highly sensitive and selective ethanol gas sensors for environmental and industrial applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-34

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Singh, S. Sikarwar, A. Verma, B.C. Yadav, The recent development of metal oxide heterostructures based gas sensor, their future opportunities and challenges: a review, Sensors and Actuators A: Physical 332 (2021) 113127.

DOI: 10.1016/j.sna.2021.113127

Google Scholar

[2] D. Zappa, V. Galstyan, N. Kaur, H.M.M. Arachchige, O. Sisman, E. Comini, Metal oxide-based heterostructures for gas sensors-A review, Analytica Chimica Acta 1039 (2018) 1-23.

DOI: 10.1016/j.aca.2018.09.020

Google Scholar

[3] W. Ouyang, F. Teng, J.H. He, X. Fang, Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge‐carrier engineering, Advanced Functional Materials 29(9) (2019) 1807672.

DOI: 10.1002/adfm.201807672

Google Scholar

[4] C. Xia, H. Wang, J.K. Kim, J. Wang, Rational design of metal oxide‐based heterostructure for efficient photocatalytic and photoelectrochemical systems, Advanced Functional Materials 31(12) ( 2021) 2008247.

DOI: 10.1002/adfm.202008247

Google Scholar

[5] S. Yang, G. Lei, H. Xu, Z. Lan, Z. Wang, and H. Gu, Metal oxide based heterojunctions for gas sensors: A review, Nanomaterials 11(4) (2021) 1026.

DOI: 10.3390/nano11041026

Google Scholar

[6] L.Y. Gai, R. Lai, X.H. Dong, X. Wu, Q.T. Luan, J. Wang, H.F. Lin, W.H. Ding, G.L. Wu, W.F. Xie, Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions, Rare Metals 41(6) (2022) 1818-1842.

DOI: 10.1007/s12598-021-01937-4

Google Scholar

[7] J.M. Walker, S.A. Akbar, A. Morris, Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: A review, Sensors and Actuators B: Chemical 286 (2019) 624-640.

DOI: 10.1016/j.snb.2019.01.049

Google Scholar

[8] Q. Fu, K. Lu, N. Li, Z. Dong, Advances in the development of MOS-based sensors for detection of ethanol: A review, Materials Research Bulletin (2023)112457.

DOI: 10.1016/j.materresbull.2023.112457

Google Scholar

[9] X. Deng, L. Zhang, J. Guo, Q. Chen, J. Ma, ZnO enhanced NiO-based gas sensors towards ethanol, Materials Research Bulletin 90 (2017) 170-174.

DOI: 10.1016/j.materresbull.2017.02.040

Google Scholar

[10] C. Wang, X. Cui, J. Liu, X. Zhou, X. Cheng, Sun, X. Hu, X. Li, J. Zheng, , G. Lu, Design of superior ethanol gas sensor based on Al-doped NiO nanorod-flowers, Acs Sensors 1(2) (2016) 131-136.

DOI: 10.1021/acssensors.5b00123

Google Scholar

[11] J.A. Alberola Borràs, Environmental evaluation for the development of photovoltaic devices based on halide perovskite through life cycle assessment (2021).

DOI: 10.6035/14107.2021.209673

Google Scholar

[12] D.L. Cocchetto, Characterization of gas migration related to ethanol blended fuel spills and stray gas (Doctoral dissertation, University of British Columbia) (2023).

Google Scholar

[13] R.D.C. Olivares, S.S. Rivera, J.E.N. Mc Leod, Database for accidents and incidents in the fuel ethanol industry, Journal of Loss Prevention in the Process Industries 38 (2015) 276-297.

DOI: 10.1016/j.jlp.2015.10.008

Google Scholar

[14] X.T. Yin, D. Dastan, F. Gity, J. Li, Z. Shi, N.D. Alharbi, Y. Liu, X.M. Tan, X.C. Gao, X.G. Ma, L. Ansari, Gas sensing selectivity of SnO2-xNiO sensors for homogeneous gases and its selectivity mechanism: Experimental and theoretical studies, Sensors and Actuators A: Physical 354 (2023) 114273.

DOI: 10.1016/j.sna.2023.114273

Google Scholar

[15] A.A. Ahmad, A.B. Migdadi, Q.M. Al-Bataineh, Structural, optical, and electrical properties of strontium-doped tin dioxide films for high photoconductivity, Thin Solid Films 796 (2024) 140312.

DOI: 10.1016/j.tsf.2024.140312

Google Scholar

[16] Z. Khatoon, H. Fouad, H.K. Seo, O.Y. Alothman, Z.A. Ansari, S.G. Ansari, Ethyl Acetate Chemical Sensor as Lung Cancer Biomarker Detection Based on Doped Nano-SnO₂ Synthesized by Sol-Gel Process, IEEE Sensors Journal 20(21) (2020) 12504-12511.

DOI: 10.1109/jsen.2020.3001285

Google Scholar

[17] J. Zhang, S. Ma, B. Wang, S. Pei, Preparation of composite SnO2/CuO nanotubes by electrospinning and excellent gas selectivity to ethanol, Sensors and Actuators A: Physical 332 (2021) 113090.

DOI: 10.1016/j.sna.2021.113090

Google Scholar

[18] J. Zhang, S. Ma, B. Wang, S. Pei, Hydrothermal synthesis of SnO2-CuO composite nanoparticles as a fast-response ethanol gas sensor, Journal of Alloys and Compounds 886 (2021) 161299.

DOI: 10.1016/j.jallcom.2021.161299

Google Scholar

[19] M. Nobakhti, Optimization and characterization of atomic-layer-deposited tin oxide thin films metal oxide semiconductor (MOS) sensors to detect polar and non-polar volatile organic compounds (Doctoral dissertation, University of British Columbia) (2021).

Google Scholar

[20] B.E. Saraç, Structural and optoelectronic properties of sol-gel derived nickel oxide thin films (Master's thesis, Middle East Technical University) (2017).

Google Scholar

[21] Z. Wang, K. Nayak, J.A. Caraveo‐Frescas, H.N. Alshareef, Recent developments in p‐Type oxide semiconductor materials and devices, Advanced Materials 28(20) (2016) 3831-3892.

DOI: 10.1002/adma.201503080

Google Scholar

[22] S.G. Danjumma, Y. Abubakar, S. Suleiman, Nickel oxide (NiO) devices and applications: a review, J. Eng. Res. Technol. 8 (2019) 12-21.

Google Scholar

[23] T. Mokoena, H.C. Swart, D.E. Motaung, A review on recent progress of p-type nickel oxide based gas sensors: Future perspectives, Journal of Alloys and Compounds 805 (2019) 267-294.

DOI: 10.1016/j.jallcom.2019.06.329

Google Scholar

[24] X. Sun, X. Hu, Y. Wang, R. Xiong, X. Li, J. Liu, H. Ji, X. Li, S. Cai, C. Zheng, Enhanced gas-sensing performance of Fe-doped ordered mesoporous NiO with long-range periodicity, The Journal of Physical Chemistry C 119(6) (2015) 3228-3237.

DOI: 10.1021/jp5124585

Google Scholar

[25] N. Joshi, M.L. Braunger, F.M. Shimizu, Jr, A. Riul, O.N. Oliveira, Insights into nano-heterostructured materials for gas sensing: A review, Multifunctional Materials 4(3) (2021) 032002.

DOI: 10.1088/2399-7532/ac1732

Google Scholar

[26] S. Das, S. Mojumder, D. Saha, M. Pal, Influence of major parameters on the sensing mechanism of semiconductor metal oxide based chemiresistive gas sensors: A review focused on personalized healthcare, Sensors and Actuators B: Chemical 352 (2022) 131066.

DOI: 10.1016/j.snb.2021.131066

Google Scholar

[27] Q. Zhou, C. Tang, S. Zhu, W.G. Chen, NiO doped SnO2 p–n heterojunction microspheres: preparation, characterisation and CO sensing properties, Materials Technology 30(6) (2015) 349-355.

DOI: 10.1179/1753555715y.0000000010

Google Scholar

[28] C. Wei, B. Bo, B. Tao, Y. Lu, S. Peng, W. Song, Q. Zhou, Hydrothermal synthesis and structural characterization of NiO/ SnO2 composites and hydrogen sensing properties, Journal of spectroscopy 2015(1) (2015) 450485.

DOI: 10.1155/2015/450485

Google Scholar

[29] U.J. Tupe, M.S. Zambare, A.V. Patil, B. Koli, The binary oxide NiO-CuO nanocomposite based thick film sensor for the acute detection of Hydrogen Sulphide gas vapours, Material Science Research India 17(3) (2020) 260-269.

DOI: 10.13005/msri/170308

Google Scholar

[30] V.R. Bagul, G.R. Bhagure, S.A. Ahire, A.V. Patil, V.A. Adole, and B. Koli, Fabrication, characterization and exploration of cobalt (II) ion doped, modified zinc oxide thick film sensor for gas sensing characteristics of some pernicious gases, Journal of the Indian Chemical Society 98(11) (2021) 100187.

DOI: 10.1016/j.jics.2021.100187

Google Scholar

[31] B. Koli, K.H. Kapadnis, U.G. Deshpande, U.J. Tupe, S.G. Shinde, R.S. Ingale, Fabrication of thin film sensors by spin coating using sol-gel LaCrO3 Perovskite material modified with transition metals for sensing environmental pollutants, greenhouse gases and relative humidity, Environmental Challenges 3 (2021) 100043.

DOI: 10.1016/j.envc.2021.100043

Google Scholar

[32] S.U. Din, M.U. Haq, M. Sajid, R. Khatoon, X. Chen, L. Li, M. Zhang, L. Zhu, Development of high-performance sensor based on NiO/SnO2 heterostructures to study sensing properties towards various reducing gases, Nanotechnology 31(39) (2020) 395502.

DOI: 10.1088/1361-6528/ab98bb

Google Scholar

[33] Z. Wei, Q. Zhou, J. Wang, Z. Lu, L. Xu, W. Zeng, Hydrothermal synthesis of SnO2 nanoneedle-anchored NiO microsphere and its gas sensing performances,  Nanomaterials 9(7) (2019) 1015.

DOI: 10.3390/nano9071015

Google Scholar

[34] Z. Li, J. Yi, Enhanced ethanol sensing of Ni-doped SnO2 hollow spheres synthesized by a one-pot hydrothermal method, Sensors and Actuators B: Chemical 243 (2017) 96-103.

DOI: 10.1016/j.snb.2016.11.136

Google Scholar

[35] Y.X. Chen, V. Gombac, T. Montini, A. Lavacchi, J. Filippi, H.A. Miller, Fornasiero, F. Vizza, An increase in hydrogen production from light and ethanol using a dual scale porosity photocatalyst, Green Chemistry 20(10) (2018) 2299-2307.

DOI: 10.1039/c7gc03508j

Google Scholar

[36] L. Gao, F. Ren, Z. Cheng, Y. Zhang, Q. Xiang, J. Xu, Porous corundum-type In 2 O 3 nanoflowers: controllable synthesis, enhanced ethanol-sensing properties and response mechanism, Cryst. Eng. Comm. 17(17) (2015) 3268-3276.

DOI: 10.1039/c5ce00279f

Google Scholar

[37] Sinha, A. Datar, C. Jeong, X. Deng, Y.G. Chung, L.C. Lin, Surface area determination of porous materials using the Brunauer–Emmett–Teller (BET) method: limitations and improvements, The Journal of Physical Chemistry C 123(33) (2019) 20195-20209.

DOI: 10.1021/acs.jpcc.9b02116

Google Scholar

[38] Q. Li, D. Chen, J. Miao, S. Lin, Z. Yu, D. Cui, Z. Yang, X. Chen, Highly sensitive sensor based on ordered porous ZnO nanosheets for ethanol detecting application, Sensors and Actuators B: Chemical 326 (2021) 128952.

DOI: 10.1016/j.snb.2020.128952

Google Scholar

[39] Z. Wang, Z. Tian, D. Han, and F. Gu, Highly sensitive and selective ethanol sensor fabricated with In-doped 3DOM ZnO, ACS applied materials & interfaces 8(8) (2016) 5466-5474.

DOI: 10.1021/acsami.6b00339

Google Scholar

[40] Y. Yang, X. Zhou, B. Li, C. Zhang, Recent progress of the gas diffusion layer in proton exchange membrane fuel cells: Material and structure designs of microporous layer, International Journal of Hydrogen Energy 46(5) (2021) 4259-4282.

DOI: 10.1016/j.ijhydene.2020.10.185

Google Scholar

[41] S. Wang, J. Yang, H. Zhang, Y. Wang, X. Gao, L. Wang, Z. Zhu, One-pot synthesis of 3D hierarchical SnO2 nanostructures and their application for gas sensor, Sensors and Actuators B: Chemical, 207 (2015) 83-89.

DOI: 10.1016/j.snb.2014.10.032

Google Scholar

[42] S.F. Saber, A. Haseeb, S. Rozali, Synthesis of NiO-SnO2 cauliflower-like gas sensor material using a facile hydrothermal method for acetone detection, Materials Research Express (2024).

DOI: 10.1088/2053-1591/ad80fe/v2/response1

Google Scholar

[43] B. Akkinepally, B. Sri Harisha, N.R. Nadar, M.A. Nazir, A.M. Tighezza, H.T. Das, I.N. Reddy, J. Shim, D. Choi, Nanoscale synergy: Optimizing energy storage with SnO2 quantum dots on ZnO hexagonal prisms for advanced supercapacitors, Nanotechnology Reviews 13(1) (2024) 20240047.

DOI: 10.1515/ntrev-2024-0047

Google Scholar

[44] M. Mathew, V. Shinde, R. Samal, and C.S. Rout, A review on mechanisms and recent developments in p n heterojunctions of 2D materials for gas sensing applications, Journal of Materials Science 56 (2021) 9575-9604.

DOI: 10.1007/s10853-021-05884-4

Google Scholar

[45] M.H. Raza, R. Di Chio, K. Movlaee, Amsalem, , N. Koch, N. Barsan, G. Neri, N. Pinna, Role of Heterojunctions of Core–Shell Heterostructures in Gas Sensing, ACS Applied Materials & Interfaces 14(19) (2022) 22041-22052.

DOI: 10.1021/acsami.2c00808

Google Scholar

[46] M. Al-Hashem, S. Akbar, Morris, Role of oxygen vacancies in nanostructured metal-oxide gas sensors: a review, Sensors and Actuators B: Chemical 301(2019) 126845.

DOI: 10.1016/j.snb.2019.126845

Google Scholar

[47] C. Zhang, G. Liu, X. Geng, K. Wu, M. Debliquy, Metal oxide semiconductors with highly concentrated oxygen vacancies for gas sensing materials: A review, Sensors and Actuators A: Phy. 309 (2020) 112026.

DOI: 10.1016/j.sna.2020.112026

Google Scholar

[48] B.J. Inkson, Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. In Materials characterization using nondestructive evaluation (NDE) methods, Woodhead publishing (2016) (17-43).

DOI: 10.1016/b978-0-08-100040-3.00002-x

Google Scholar

[49] L. Xu, M. Ge, F. Zhang, H. Huang, Y.Sun, D. He, Nanostructured of SnO2/NiO composite as a highly selective formaldehyde gas sensor, Journal of Materials Research 35(22) (2020) 3079-3090.

DOI: 10.1557/jmr.2020.239

Google Scholar

[50] S. Bai, J. Liu, J. Guo, R. Luo, D. Li, Y. Song, C.C. Liu, A. Chen, Facile preparation of SnO2/NiO composites and enhancement of sensing performance to NO2, Sensors and Actuators B: Chemical 249 (2017) 22-29.

DOI: 10.1016/j.snb.2017.03.121

Google Scholar

[51] G.J. Sun, J.K. Lee, W.I. Lee, R. Dwivedi, C. Lee, T. Ko, Ethanol sensing properties and dominant sensing mechanism of NiO-decorated SnO 2 nanorod sensors, Electronic Materials Letters 13 (2017) 260-269.

DOI: 10.1007/s13391-017-1719-6

Google Scholar

[52] B. Koli, K.H. Kapadnis, U.G. Deshpande, B. More, U.J. Tupe, Sol-gel fabricated transition metal Cr3+, Co2+ doped lanthanum ferric oxide (LFO-LaFeO3) thin flm sensors for the detection of toxic, fammable gases: a comparative study, Mater Sci Res India 17 (2020) 70-83.

DOI: 10.13005/msri/170110

Google Scholar

[53] S. Suryawanshi, A.V. Patil, G.G. Padhye, U.J. Tupe, Investigation the Influence of Calcination Temperature on Structural, Electrical and Gas Sensing Properties MnO2 Thick Films, Advanced Materials Research 1180 (2024) 67-81.

DOI: 10.4028/p-uyhr0f

Google Scholar

[54] A. Patil, U.J. Tupe, A.V. Patil, Reduced graphene oxide screen printed thick film as NO2 gas sensor at low temperature, Advanced Materials Research 1167 (2021) 43-55.

DOI: 10.4028/www.scientific.net/amr.1167.43

Google Scholar

[55] U.D. Lad, N.S. Kokode, U.J. Tupe, Study of pn Heterojunction Thin Films for Reducing Gas Sensing Application Fabricated by Thermal Evaporation Technique, Advanced Materials Research 1172 (2022) 67-82.

DOI: 10.4028/p-2zz6i6

Google Scholar

[56] S.L. Wagh, U.J. Tupe, A.B Patil, A.V. Patil, Influence of Annealing Temperature on Structural and Electrical Properties of Screen Printed Lanthanum Oxide Thick Films, Iranian Journal of Materials Science & Engineering 19(4) (2022).

Google Scholar

[57] R.C. Ramola, S. Negi, M. Rawat, R.C. Singh, F. Singh, Annealing effects on gas sensing response of Ga-doped ZnO thin films, ACS omega 6(17) (2021) 11660-11668.

DOI: 10.1021/acsomega.1c00984

Google Scholar

[58] H. Huang, Z. Du, H.C. Wu, F. Gao, L. Jiang, H. Hou, S. Chen, W. Li, F. Hu, W. Yang, D. Zhang, High-Temperature resistant ethanol sensing enhanced by ZnO Nanoparticles/SiC nanowire heterojunctions, Applied Surface Science 645 (2024) 158828.

DOI: 10.1016/j.apsusc.2023.158828

Google Scholar

[59] S. Ma, J. Xu, Nanostructured metal oxide heterojunctions for chemiresistive gas sensors, Journal of Materials Chemistry A 11(44) (2023) 23742-23771.

DOI: 10.1039/d3ta04953a

Google Scholar

[60] L. Zhang, R. Tong, W. Ge, R. Guo, S.E. Shirsath, and J. Zhu, Facile one-step hydrothermal synthesis of SnO2 microspheres with oxygen vacancies for superior ethanol sensor, Journal of Alloys and Compounds 814 (2020) 152266.

DOI: 10.1016/j.jallcom.2019.152266

Google Scholar

[61] K.A. Hiyoto, E.R. Fisher, Utilizing plasma modified SnO2 paper gas sensors to better understand gas-surface interactions at low temperatures, Journal of Vacuum Science & Technology A 38(4) (2020).

DOI: 10.1116/6.0000029

Google Scholar

[62] G.W. Hunter, S. Akbar, S. Bhansali, M. Daniele, D. Erb, K. Johnson, C.C. Liu, D. Miller, O. Oralkan, J. Hesketh, Manickam, Editors' choice—Critical review—A critical review of solid state gas sensors, Journal of The Electrochemical Soc. 167(3) (2020) 037570.

DOI: 10.1149/1945-7111/ab729c

Google Scholar

[63] J. Burgués, J.M. Jiménez-Soto, S. Marco, Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models, Analytica chimica acta 1013 (2018) 13-25.

DOI: 10.1016/j.aca.2018.01.062

Google Scholar

[64] J. Van Den Broek, S. Abegg, S.E. Pratsinis, A.T. Güntner, Highly selective detection of methanol over ethanol by a handheld gas sensor, Nature communications 10(1) (2019) 4220.

DOI: 10.1038/s41467-019-12223-4

Google Scholar

[65] T. Moseley, Progress in the development of semiconducting metal oxide gas sensors: a review, Measurement Science and Technology 28(8) (2017) 082001.

DOI: 10.1088/1361-6501/aa7443

Google Scholar

[66] Y. Wang, X.N. Meng, J.L. Cao, Rapid detection of low concentration CO using Pt-loaded ZnO nanosheets, Journal of hazardous materials 381 (2020) 120944.

DOI: 10.1016/j.jhazmat.2019.120944

Google Scholar

[67] A. Beniwal, Room Temperature Operated Electrospun Nanofibers-Based SnO2/PTh Sensor for Acetone Sensing Applications, IEEE Transactions on Electron Devices 68(8) (2021) 4084-4089.

DOI: 10.1109/ted.2021.3093378

Google Scholar

[68] M.S.A.B. Shakin, M.T. Rahman, S.N. Shanto, M.M. Rana, Au-Loaded WS 2/SnO2 Heterostructure for Room Temperature Detection of CO at ppb-Level, IEEE Sensors Journal (2024).

DOI: 10.1109/jsen.2024.3467052

Google Scholar

[69] Y. Zhao, H. Li, Y. Li, Y. Ma, H. Yang, H. Liu, X. Ren, H. Zhao, Layered SnO2 nanorods arrays anchored on reduced graphene oxide for ultra-high and ppb level formaldehyde sensing, Sensors and Actuators B: Chemical 346 (2021) 130452.

DOI: 10.1016/j.snb.2021.130452

Google Scholar

[70] H. Zhao, J. Sun, J. Liu, H. Zhang, H. He, X. Liu, D. Liao, Z. Tong, L. Sun, UV-triggered carrier transport regulation of fibrous NiO/SnO2 heterostructures for triethylamine detection, Chemical Engineering Journal 476 (2023) 146687.

DOI: 10.1016/j.cej.2023.146687

Google Scholar

[71] Y. Xu, L. Zheng, C. Yang, W. Zheng, X. Liu, J. Zhang, Oxygen vacancies enabled porous SnO2 thin films for highly sensitive detection of triethylamine at room temperature, ACS applied materials & interfaces 12(18) (2020) 20704-20713.

DOI: 10.1021/acsami.0c04398

Google Scholar

[72] U.D. Lad, N.S. Kokode, M.B. Deore, U.J. Tupe, MgO incorporated ZnO nanostructured binary oxide thin film ethanol gas sensor, IJSDR 6(1) (2021) 135-142.

Google Scholar

[73] R.S. Shinde, S.D. Khairnar, M.R. Patil, V.A. Adole, B. Koli, V.V. Deshmane, D.K. Halwar, R.A. Shinde, T.B. Pawar, B.S. Jagdale, A.V. Patil, Synthesis and characterization of ZnO/CuO nanocomposites as an effective photocatalyst and gas sensor for environmental remediation, Journal of Inorganic and Organometallic Polymers and Materials (2022) 1-22.

DOI: 10.1007/s10904-021-02178-9

Google Scholar

[74] S.A. Ahire, B. Koli, A.V. Patil, B.S. Jagdale, A.A. Bachhav, T.B. Pawar, Designing of screen-printed stannous oxide (SnO2) thick film sensors modified by cobalt and nitrogen elements for sensing some toxic gases and volatile organic compounds, Current Research in Green and Sustainable Chemistry 4 (2021) 100213.

DOI: 10.1016/j.crgsc.2021.100213

Google Scholar

[75] K.G. Nair, V. Dinesh, Biji, Metal oxide based heterojunction nanoscale materials for chemiresistive gas sensors, In Advances in Nanostructured Composites (2019) 161-201. CRC Press.

DOI: 10.1201/9780429021718-9

Google Scholar

[76] J. He, W. Jiao, L. Zhang, R. Feng, Preparation and gas-sensing performance of SnO2/NiO composite oxide synthesized by microwave-assisted liquid phase deposition, Particuology 41 (2018) 118-125.

DOI: 10.1016/j.partic.2018.03.003

Google Scholar

[77] W. Tong, Y. Wang, Y. Bian, A. Wang, N. Han, Y. Chen, Sensitive cross-linked SnO2: NiO networks for MEMS compatible ethanol gas sensors, Nanoscale Research Letters 15 (2020) 1-12.

DOI: 10.1186/s11671-020-3269-3

Google Scholar