A Comparative Study of the Reinforcing Effect of Bauxite Residue in Pentaerythritol and Expandable Graphite Based Intumescent Systems

Article Preview

Abstract:

Intumescent systems are passive fire-retardant systems which employ the insulative property of a condensed char. The texture, strength and appearance of the intumescent char are affected by the individual fire-retardant components. In the present work, the char behaviors of chemically reactive and physically reactive intumescent systems were compared. Bauxite residue (BR) was used as reinforcing filler in pentaerythritol (PER)/ammonium phosphate (APP), a chemically reactive system, and expandable graphite (EG)/ammonium phosphate (APP), a physically reactive intumescent system. BR was found to have antagonistic effect on the char properties of the traditional PER-APP system due to chemical interference with the intumescent reaction. Secondly, the resulting highly viscous char impeded the expansion of available intumescent gases. Consequently, a hard, crusty, char was produced with the degree of expansion reducing from 18.5 to 1.2. On the other hand, the graphite flakes expanded independent of the intumescent reaction, their forceful expansion complimented the BR-reinforced viscous char resulting in a stronger, compact, expanded char. Therefore, EG-intumescent systems may be said to be less selective in its synergism compared to PER-intumescent systems. BR offers a promising potential as a cohesive, reinforcing filler for EG-based intumescent systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-12

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. P. Nolan, Fire Fighting Pumping Systems at Industrial Facilities Second Edition. Elsevier Books, 2011.

Google Scholar

[2] M. Sabee, M. M. Saddiq, Z. Itam, S. Beddu, N. M. Zahari, N. L. Mohd Kamal, D. Mohamad, N. A. Zulkepli, M. D. Shafiq, and Z. A. Abdul Hamid, Flame Retardant Coatings: Additives, Binders, and Fillers, Polymers 14, no. 14: 2911 (2022)

DOI: 10.3390/polym14142911

Google Scholar

[3] L. Bo‐Wen, H. Zhao, and Y. Wang. "Advanced flame‐retardant methods for polymeric materials." Advanced Materials 34, no. 46 (2022): 2107905.

DOI: 10.1002/adma.202107905

Google Scholar

[4] S.S. Ray, & M. Kuruma, Halogen-free flame-retardant polymers, Springer Series in Materials Science, 294, 69, 2020.

Google Scholar

[5] J. P. Covello, E. J. Price, & G. E. Wnek , Tannic acid's role as both char former and blowing agent in epoxy‐based intumescent fire retardants, SPE Polymers, 5(2), (2024) 182-191.

DOI: 10.1002/pls2.10118

Google Scholar

[6] W. Lu, J. Ye, L. Zhu, Z. Jin & Y. Matsumoto, Intumescent flame retardant mechanism of lignosulfonate as a char forming agent in rigid polyurethane foam, Polymers, 13(10), 1585, (2021).

DOI: 10.3390/polym13101585

Google Scholar

[7] J. Zhang, J. P. Fernández-Blázquez, X. L. Li, R. Wang, X. Zhang, , & D. Y. Wang, A facile technique to investigate the char strength and fire retardant performance towards intumescent epoxy nanocomposites containing different synergists, Polymer Degradation and Stability, 202, 110000, (2022).

DOI: 10.1016/j.polymdegradstab.2022.110000

Google Scholar

[8] N. Amir, F. Ahmad, and P. Megat-Yusoff, "Study on the fibre reinforced epoxy-based intumescent coating formulations and their char characteristics," Journal of Applied Sciences, vol. 11, pp.1678-1687, (2011).

DOI: 10.3923/jas.2011.1678.1687

Google Scholar

[9] M. Yasir, F. Ahmad, P. S. M. M. Yusoff, S. Ullah & M. Jimenez, Latest trends for structural steel protection by using intumescent fire protective coatings: a review, Surface Engineering, 36(4), 334-363, 2020.

DOI: 10.1080/02670844.2019.1636536

Google Scholar

[10] L. Wang, Y. Wang & W. Zeng, An experimental study on crack and debonding of intumescent coatings and their effects on temperature development of steel elements, Fire Safety Journal, 122, 103325, (2021) .

DOI: 10.1016/j.firesaf.2021.103325

Google Scholar

[11] B. Mazela, A. Batista, & W. Grześkowiak, Expandable graphite as a fire retardant for cellulosic materials—A review, Forests, 11(7), 755, (2022) .

DOI: 10.3390/f11070755

Google Scholar

[12] I. I. Kabir, J. Carlos Baena, W. Wang, C. Wang, S. Oliver, M.T. Nazir, … & G. H. Yeoh, Optimisation of Additives to Maximise Performance of Expandable Graphite-Based Intumescent-Flame-Retardant Polyurethane Composites, Molecules, 28(13), 5100, (2023).

DOI: 10.3390/molecules28135100

Google Scholar

[13] Y. Chen, Y. Luo, X. Guo, L. Chen, & D. Jia, The synergistic effect of ionic liquid-modified expandable graphite and intumescent flame-retardant on flame-retardant rigid polyurethane foams, Materials, 13(14), 3095, ( 2020).

DOI: 10.3390/ma13143095

Google Scholar

[14] S. Ullah, F. Ahmad, A. G. Al‐Sehemi, M.R. Raza, M. A. Assiri, A., Irfan, ... & G. H. Yeoh, Effects of expandable graphite on char morphology and pyrolysis of epoxy based intumescent fire‐retardant coating, Journal of Applied Polymer Science, 138(41), 51206, (2021).

DOI: 10.1002/app.51206

Google Scholar

[15] A. Guchait, A. Saxena, S. Chattopadhyay & T. Mondal, Influence of nanofillers on adhesion properties of polymeric composites. ACS omega, 7(5), 3844-3859, (2022).

DOI: 10.1021/acsomega.1c05448

Google Scholar

[16] K. M. Nasir, N. H. R. Sulong, M.R. Johan, & A. M. Afifi, Synergistic effect of industrial-and bio-fillers waterborne intumescent hybrid coatings on flame retardancy, physical and mechanical properties. Progress in Organic Coatings, 149, 105905, (2020).

DOI: 10.1016/j.porgcoat.2020.105905

Google Scholar

[17] Ahmad, F., Zulkurnain, E. S. B., Ullah, S., Al-Sehemi, A. G., & Raza, M. R. (2020). Improved fire resistance of boron nitride/epoxy intumescent coating upon minor addition of nano-alumina. Materials Chemistry and Physics, 256, 123634.

DOI: 10.1016/j.matchemphys.2020.123634

Google Scholar

[18] H. Li, Z. Hu, S. Zhang, X. Gu, H. Wang, P. Jiang, P., & Q. Zhao, Effects of titanium dioxide on the flammability and char formation of water-based coatings containing intumescent flame retardants. Progress in Organic Coatings, 78, 318-324 (2015).

DOI: 10.1016/j.porgcoat.2014.08.003

Google Scholar

[19] F. Wang, H. Liu & L. Yan, Comparative study of fire resistance and char formation of intumescent fire-retardant coatings reinforced with three types of shell bio-fillers. Polymers, 13(24), 4333 (2021).

DOI: 10.3390/polym13244333

Google Scholar

[20] K. M. Nasir, N. H. R. Sulong, M. R. Johan & A. M. Afifi, Synergistic effect of industrial-and bio-fillers waterborne intumescent hybrid coatings on flame retardancy, physical and mechanical properties. Progress in Organic Coatings, 149, 105905 (2020)

DOI: 10.1016/j.porgcoat.2020.105905

Google Scholar

[21] J. Zhang, Z. Liang, J. Liu, Y. Wan, X. Tao, H. Zhang, & M. Wang, Preparation and performance analysis of palygorskite reinforced silicone-acrylic emulsion-based intumescent coating. Progress in Organic Coatings, 166, 106801 (2022).

DOI: 10.1016/j.porgcoat.2022.106801

Google Scholar

[22] Q. F. Gillani, F. Ahmad, M.I.A. Mutalib, P.S. Melor, S. Ullah & Arogundade, A. Effect of dolomite clay on thermal performance and char morphology of expandable graphite based intumescent fire retardant coatings, Procedia engineering, 148, (2016), 146-150

DOI: 10.1016/j.proeng.2016.06.505

Google Scholar

[23] J. Mastalska-Popławska, Effect of Modified Halloysite/Expandable Graphite Addition on Thermal and Intumescent Properties of the Fire-Resistant Paints for Steel, Arabian Journal for Science and Engineering, 48(12), (2023), 16087-16095.

DOI: 10.1007/s13369-023-07998-0

Google Scholar

[24] P. S. Reddy, N.G. Reddy, V. Z. Serjun, B. Mohanty, S.K. Das, K.R. Reddy, & B.H. Rao, Properties and assessment of applications of red mud (bauxite residue): current status and research needs, Waste and Biomass Valorization, 12, (2021), 1185-1217.

DOI: 10.1007/s12649-020-01089-z

Google Scholar

[25] G. Li, J. Liu, L. Yi, J. Luo & T. Jiang, Bauxite residue (red mud) treatment: Current situation and promising solution, Science of The Total Environment, 174757, (2024).

DOI: 10.1016/j.scitotenv.2024.174757

Google Scholar

[26] P. Chaisaenrith, P. Taksakulvith, S. Pavasupree, Effect of nano titanium dioxide in intumescent fireproof coating on thermal performance and char morphology. Materials Today: Proceedings, (2021) 47:3462-7.

DOI: 10.1016/j.matpr.2021.03.461

Google Scholar

[27] R. Samiee, S. Montazeri, B. Ramezanzadeh, M. Mahdavian, Ce-MOF nanorods/aluminum hydroxide (AlTH) synergism effect on the fire-retardancy/smoke-release and thermo-mechanical properties of a novel thermoplastic acrylic intumescent composite coating. Chemical Engineering Journal, (2022) 428:132533.

DOI: 10.1016/j.cej.2021.132533

Google Scholar

[28] Y. Wang, K. Yu, J. Zhao & A. Xin, NaOH hydrothermally treated gibbsite modified silicone acrylic emulsion-based intumescent flame-retardant coatings for plywood, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 646, 129001, (2022).

DOI: 10.1016/j.colsurfa.2022.129001

Google Scholar

[29] S. Ullah, F. Ahmad, A. G. Al‐Sehemi, M. R. Raza, M. A. Assiri, A. Irfan, ... & G. H. Yeoh, Effects of expandable graphite on char morphology and pyrolysis of epoxy based intumescent fire‐retardant coating. Journal of Applied Polymer Science, 138(41), 51206, (2021).

DOI: 10.1002/app.51206

Google Scholar

[30] W. Wang, Y. Peng, W. Zhang, & J. Z. Li, Effect of pentaerythritol on the properties of wood-flour/polypropylene/ammonium polyphosphate composite system. Bioresources, 10(4), 6917-6927, . (2015).

DOI: 10.15376/biores.10.4.6917-6927

Google Scholar

[31] M. Caron,  Re-examination of the Mechanism of Intumescence: Application to the Model PP/APP/PER/4A System, (Doctoral dissertation, Centrale Lille Institut), (2024).

Google Scholar

[32] Y. H. Ng, A. Dasari, K. H. Tan & L. Qian, Intumescent fire-retardant acrylic coatings: Effects of additive loading ratio and scale of testing, Progress in Organic Coatings, 150, 105985, (2021).

DOI: 10.1016/j.porgcoat.2020.105985

Google Scholar

[33] T. Peng, B. Liu, X. Gao, L. Luo, & H. Sun, Preparation, quantitative surface analysis, intercalation characteristics and industrial implications of low temperature expandable graphite. Applied surface science, 444, 800-810, (2018).

DOI: 10.1016/j.apsusc.2018.03.089

Google Scholar

[34] M. U. Salim, M.A. Mosaberpanah, A., Danish, N. Ahmad, R.A. Khalid & C. Moro, Role of bauxite residue as a binding material and its effect on engineering properties of cementitious Composites: A review. Construction and Building Materials, 409, 133844, (2023).

DOI: 10.1016/j.conbuildmat.2023.133844

Google Scholar

[35] A. S. Raghubanshi, M. Mudgal, A. Kumar & A. K. Srivastava, Recycling and potential utilization of red mud (Bauxite Residue) for construction industry applications, (2022).

Google Scholar

[36] J. Zhang, Y. Yao, K. Wang, F. Wang, H. Jiang, M. Liang, ... & G. Airey, Sustainable utilization of bauxite residue (Red Mud) as a road material in pavements: A critical review. construction and Building materials, 270, 121419, (2021).

DOI: 10.1016/j.conbuildmat.2020.121419

Google Scholar

[37] M. K. Kar, M. A. R. Ӧnal & C. R. Borra, Alumina recovery from bauxite residue: A concise review. Resources, Conservation and Recycling, 198, 107158 (2023).

DOI: 10.1016/j.resconrec.2023.107158

Google Scholar

[38] F. Cheng, J. Pang, S. Berggren, H. Tanvar, B. Mishra, & M. J. Arlos, Treating Waste with Waste: Activated Bauxite Residue (ABR) as a Potential Wastewater Treatment. ACS omega, 9(45), 45251-45262, (2024).

DOI: 10.1021/acsomega.4c06699

Google Scholar

[39] L.G.S. Santos, S.P.A. Paz, E.J.S. Cunha, & J. A. S. Souza, Non-halogenated flame-retardant additive from Amazon mineral waste. Journal of Materials Research and Technology, 9(5), 11531-11544 (2020).

DOI: 10.1016/j.jmrt.2020.08.007

Google Scholar

[40] Y. Wang, K. Yu, J. Zhao & A. Xin,). NaOH hydrothermally treated gibbsite modified silicone acrylic emulsion-based intumescent flame-retardant coatings for plywood. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 646, 129001, (2022).

DOI: 10.1016/j.colsurfa.2022.129001

Google Scholar