[1]
D. P. Nolan, Fire Fighting Pumping Systems at Industrial Facilities Second Edition. Elsevier Books, 2011.
Google Scholar
[2]
M. Sabee, M. M. Saddiq, Z. Itam, S. Beddu, N. M. Zahari, N. L. Mohd Kamal, D. Mohamad, N. A. Zulkepli, M. D. Shafiq, and Z. A. Abdul Hamid, Flame Retardant Coatings: Additives, Binders, and Fillers, Polymers 14, no. 14: 2911 (2022)
DOI: 10.3390/polym14142911
Google Scholar
[3]
L. Bo‐Wen, H. Zhao, and Y. Wang. "Advanced flame‐retardant methods for polymeric materials." Advanced Materials 34, no. 46 (2022): 2107905.
DOI: 10.1002/adma.202107905
Google Scholar
[4]
S.S. Ray, & M. Kuruma, Halogen-free flame-retardant polymers, Springer Series in Materials Science, 294, 69, 2020.
Google Scholar
[5]
J. P. Covello, E. J. Price, & G. E. Wnek , Tannic acid's role as both char former and blowing agent in epoxy‐based intumescent fire retardants, SPE Polymers, 5(2), (2024) 182-191.
DOI: 10.1002/pls2.10118
Google Scholar
[6]
W. Lu, J. Ye, L. Zhu, Z. Jin & Y. Matsumoto, Intumescent flame retardant mechanism of lignosulfonate as a char forming agent in rigid polyurethane foam, Polymers, 13(10), 1585, (2021).
DOI: 10.3390/polym13101585
Google Scholar
[7]
J. Zhang, J. P. Fernández-Blázquez, X. L. Li, R. Wang, X. Zhang, , & D. Y. Wang, A facile technique to investigate the char strength and fire retardant performance towards intumescent epoxy nanocomposites containing different synergists, Polymer Degradation and Stability, 202, 110000, (2022).
DOI: 10.1016/j.polymdegradstab.2022.110000
Google Scholar
[8]
N. Amir, F. Ahmad, and P. Megat-Yusoff, "Study on the fibre reinforced epoxy-based intumescent coating formulations and their char characteristics," Journal of Applied Sciences, vol. 11, pp.1678-1687, (2011).
DOI: 10.3923/jas.2011.1678.1687
Google Scholar
[9]
M. Yasir, F. Ahmad, P. S. M. M. Yusoff, S. Ullah & M. Jimenez, Latest trends for structural steel protection by using intumescent fire protective coatings: a review, Surface Engineering, 36(4), 334-363, 2020.
DOI: 10.1080/02670844.2019.1636536
Google Scholar
[10]
L. Wang, Y. Wang & W. Zeng, An experimental study on crack and debonding of intumescent coatings and their effects on temperature development of steel elements, Fire Safety Journal, 122, 103325, (2021) .
DOI: 10.1016/j.firesaf.2021.103325
Google Scholar
[11]
B. Mazela, A. Batista, & W. Grześkowiak, Expandable graphite as a fire retardant for cellulosic materials—A review, Forests, 11(7), 755, (2022) .
DOI: 10.3390/f11070755
Google Scholar
[12]
I. I. Kabir, J. Carlos Baena, W. Wang, C. Wang, S. Oliver, M.T. Nazir, … & G. H. Yeoh, Optimisation of Additives to Maximise Performance of Expandable Graphite-Based Intumescent-Flame-Retardant Polyurethane Composites, Molecules, 28(13), 5100, (2023).
DOI: 10.3390/molecules28135100
Google Scholar
[13]
Y. Chen, Y. Luo, X. Guo, L. Chen, & D. Jia, The synergistic effect of ionic liquid-modified expandable graphite and intumescent flame-retardant on flame-retardant rigid polyurethane foams, Materials, 13(14), 3095, ( 2020).
DOI: 10.3390/ma13143095
Google Scholar
[14]
S. Ullah, F. Ahmad, A. G. Al‐Sehemi, M.R. Raza, M. A. Assiri, A., Irfan, ... & G. H. Yeoh, Effects of expandable graphite on char morphology and pyrolysis of epoxy based intumescent fire‐retardant coating, Journal of Applied Polymer Science, 138(41), 51206, (2021).
DOI: 10.1002/app.51206
Google Scholar
[15]
A. Guchait, A. Saxena, S. Chattopadhyay & T. Mondal, Influence of nanofillers on adhesion properties of polymeric composites. ACS omega, 7(5), 3844-3859, (2022).
DOI: 10.1021/acsomega.1c05448
Google Scholar
[16]
K. M. Nasir, N. H. R. Sulong, M.R. Johan, & A. M. Afifi, Synergistic effect of industrial-and bio-fillers waterborne intumescent hybrid coatings on flame retardancy, physical and mechanical properties. Progress in Organic Coatings, 149, 105905, (2020).
DOI: 10.1016/j.porgcoat.2020.105905
Google Scholar
[17]
Ahmad, F., Zulkurnain, E. S. B., Ullah, S., Al-Sehemi, A. G., & Raza, M. R. (2020). Improved fire resistance of boron nitride/epoxy intumescent coating upon minor addition of nano-alumina. Materials Chemistry and Physics, 256, 123634.
DOI: 10.1016/j.matchemphys.2020.123634
Google Scholar
[18]
H. Li, Z. Hu, S. Zhang, X. Gu, H. Wang, P. Jiang, P., & Q. Zhao, Effects of titanium dioxide on the flammability and char formation of water-based coatings containing intumescent flame retardants. Progress in Organic Coatings, 78, 318-324 (2015).
DOI: 10.1016/j.porgcoat.2014.08.003
Google Scholar
[19]
F. Wang, H. Liu & L. Yan, Comparative study of fire resistance and char formation of intumescent fire-retardant coatings reinforced with three types of shell bio-fillers. Polymers, 13(24), 4333 (2021).
DOI: 10.3390/polym13244333
Google Scholar
[20]
K. M. Nasir, N. H. R. Sulong, M. R. Johan & A. M. Afifi, Synergistic effect of industrial-and bio-fillers waterborne intumescent hybrid coatings on flame retardancy, physical and mechanical properties. Progress in Organic Coatings, 149, 105905 (2020)
DOI: 10.1016/j.porgcoat.2020.105905
Google Scholar
[21]
J. Zhang, Z. Liang, J. Liu, Y. Wan, X. Tao, H. Zhang, & M. Wang, Preparation and performance analysis of palygorskite reinforced silicone-acrylic emulsion-based intumescent coating. Progress in Organic Coatings, 166, 106801 (2022).
DOI: 10.1016/j.porgcoat.2022.106801
Google Scholar
[22]
Q. F. Gillani, F. Ahmad, M.I.A. Mutalib, P.S. Melor, S. Ullah & Arogundade, A. Effect of dolomite clay on thermal performance and char morphology of expandable graphite based intumescent fire retardant coatings, Procedia engineering, 148, (2016), 146-150
DOI: 10.1016/j.proeng.2016.06.505
Google Scholar
[23]
J. Mastalska-Popławska, Effect of Modified Halloysite/Expandable Graphite Addition on Thermal and Intumescent Properties of the Fire-Resistant Paints for Steel, Arabian Journal for Science and Engineering, 48(12), (2023), 16087-16095.
DOI: 10.1007/s13369-023-07998-0
Google Scholar
[24]
P. S. Reddy, N.G. Reddy, V. Z. Serjun, B. Mohanty, S.K. Das, K.R. Reddy, & B.H. Rao, Properties and assessment of applications of red mud (bauxite residue): current status and research needs, Waste and Biomass Valorization, 12, (2021), 1185-1217.
DOI: 10.1007/s12649-020-01089-z
Google Scholar
[25]
G. Li, J. Liu, L. Yi, J. Luo & T. Jiang, Bauxite residue (red mud) treatment: Current situation and promising solution, Science of The Total Environment, 174757, (2024).
DOI: 10.1016/j.scitotenv.2024.174757
Google Scholar
[26]
P. Chaisaenrith, P. Taksakulvith, S. Pavasupree, Effect of nano titanium dioxide in intumescent fireproof coating on thermal performance and char morphology. Materials Today: Proceedings, (2021) 47:3462-7.
DOI: 10.1016/j.matpr.2021.03.461
Google Scholar
[27]
R. Samiee, S. Montazeri, B. Ramezanzadeh, M. Mahdavian, Ce-MOF nanorods/aluminum hydroxide (AlTH) synergism effect on the fire-retardancy/smoke-release and thermo-mechanical properties of a novel thermoplastic acrylic intumescent composite coating. Chemical Engineering Journal, (2022) 428:132533.
DOI: 10.1016/j.cej.2021.132533
Google Scholar
[28]
Y. Wang, K. Yu, J. Zhao & A. Xin, NaOH hydrothermally treated gibbsite modified silicone acrylic emulsion-based intumescent flame-retardant coatings for plywood, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 646, 129001, (2022).
DOI: 10.1016/j.colsurfa.2022.129001
Google Scholar
[29]
S. Ullah, F. Ahmad, A. G. Al‐Sehemi, M. R. Raza, M. A. Assiri, A. Irfan, ... & G. H. Yeoh, Effects of expandable graphite on char morphology and pyrolysis of epoxy based intumescent fire‐retardant coating. Journal of Applied Polymer Science, 138(41), 51206, (2021).
DOI: 10.1002/app.51206
Google Scholar
[30]
W. Wang, Y. Peng, W. Zhang, & J. Z. Li, Effect of pentaerythritol on the properties of wood-flour/polypropylene/ammonium polyphosphate composite system. Bioresources, 10(4), 6917-6927, . (2015).
DOI: 10.15376/biores.10.4.6917-6927
Google Scholar
[31]
M. Caron, Re-examination of the Mechanism of Intumescence: Application to the Model PP/APP/PER/4A System, (Doctoral dissertation, Centrale Lille Institut), (2024).
Google Scholar
[32]
Y. H. Ng, A. Dasari, K. H. Tan & L. Qian, Intumescent fire-retardant acrylic coatings: Effects of additive loading ratio and scale of testing, Progress in Organic Coatings, 150, 105985, (2021).
DOI: 10.1016/j.porgcoat.2020.105985
Google Scholar
[33]
T. Peng, B. Liu, X. Gao, L. Luo, & H. Sun, Preparation, quantitative surface analysis, intercalation characteristics and industrial implications of low temperature expandable graphite. Applied surface science, 444, 800-810, (2018).
DOI: 10.1016/j.apsusc.2018.03.089
Google Scholar
[34]
M. U. Salim, M.A. Mosaberpanah, A., Danish, N. Ahmad, R.A. Khalid & C. Moro, Role of bauxite residue as a binding material and its effect on engineering properties of cementitious Composites: A review. Construction and Building Materials, 409, 133844, (2023).
DOI: 10.1016/j.conbuildmat.2023.133844
Google Scholar
[35]
A. S. Raghubanshi, M. Mudgal, A. Kumar & A. K. Srivastava, Recycling and potential utilization of red mud (Bauxite Residue) for construction industry applications, (2022).
Google Scholar
[36]
J. Zhang, Y. Yao, K. Wang, F. Wang, H. Jiang, M. Liang, ... & G. Airey, Sustainable utilization of bauxite residue (Red Mud) as a road material in pavements: A critical review. construction and Building materials, 270, 121419, (2021).
DOI: 10.1016/j.conbuildmat.2020.121419
Google Scholar
[37]
M. K. Kar, M. A. R. Ӧnal & C. R. Borra, Alumina recovery from bauxite residue: A concise review. Resources, Conservation and Recycling, 198, 107158 (2023).
DOI: 10.1016/j.resconrec.2023.107158
Google Scholar
[38]
F. Cheng, J. Pang, S. Berggren, H. Tanvar, B. Mishra, & M. J. Arlos, Treating Waste with Waste: Activated Bauxite Residue (ABR) as a Potential Wastewater Treatment. ACS omega, 9(45), 45251-45262, (2024).
DOI: 10.1021/acsomega.4c06699
Google Scholar
[39]
L.G.S. Santos, S.P.A. Paz, E.J.S. Cunha, & J. A. S. Souza, Non-halogenated flame-retardant additive from Amazon mineral waste. Journal of Materials Research and Technology, 9(5), 11531-11544 (2020).
DOI: 10.1016/j.jmrt.2020.08.007
Google Scholar
[40]
Y. Wang, K. Yu, J. Zhao & A. Xin,). NaOH hydrothermally treated gibbsite modified silicone acrylic emulsion-based intumescent flame-retardant coatings for plywood. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 646, 129001, (2022).
DOI: 10.1016/j.colsurfa.2022.129001
Google Scholar