[1]
Al-Khirbash, S. (2015) 'Genesis and mineralogical classification of Ni-laterites, Oman Mountains', Ore Geology Reviews, 65, p.199–212.
DOI: 10.1016/j.oregeorev.2014.09.022
Google Scholar
[2]
Bunjaku, A., Kekkonen, M., Pietilä, K. and Taskinen, P. (2012) 'Effect o mineralogy and reducing agent on reduction of saprolitic nickel ores', Mineral Processing and Extractive Metallurgy
DOI: 10.1179/1743285512y.0000000010
Google Scholar
[3]
Kim, J., Dodbiba, G., Tanno, H., Okaya, K., Matsuo, S. and Fujita, T. (2010) 'Calcination of low-grade laterite for concentration of Ni by magnetic separation', Minerals Engineering, 23(4), p.282–288.
DOI: 10.1016/j.mineng.2010.01.005
Google Scholar
[4]
Lv, X., Bai, C., He, S. and Huang, Q. (2010) 'Mineral change of philippine and Indonesia nickel lateritic ore during sintering and mineralogy of their sinter', ISIJ International, 50(3), p.380–385.
DOI: 10.2355/isijinternational.50.380
Google Scholar
[5]
Pickles, C.A., Harris, C. T., Peacey, J. and Forster, J. (2013) 'Thermodynamic analysis of the Fe–Ni–Co–Mg–Si–O–H–S–C–Cl system for selective sulphidation of a nickeliferous limonitic laterite ore', Minerals Engineering, 54, p.52–62.
DOI: 10.1016/j.mineng.2013.03.029
Google Scholar
[6]
Pickles, C. A., Forster, J. and Elliott, R. (2014) 'Thermodynamic analysis of the carbothermic reduction roasting of a nickeliferous limonitic laterite ore', Minerals Engineering, 65
DOI: 10.1016/j.mineng.2014.05.006
Google Scholar
[7]
Pournaderi, S., Keskinkılıç, E., Geveci, A. and Topkaya, Y. A. (2014)'Reducibility of nickeliferous limonitic laterite ore from Central Anatolia', Canadian Metallurgical Quarterly, 53(1), p.26–37.
DOI: 10.1179/1879139513y.0000000099
Google Scholar
[8]
Nisa, S. S., Rahmawati, M., Yudha, C. S., Nilasary, H., Nursukatmo, H., Oktaviano, H. S., Muzayanha, S. U., Purwanto, A. (2022). A Fast Approach to Obtain Layered Transition-Metal Cathode Material for Rechargeable Batteries. Batteries, 8, 4.
DOI: 10.3390/batteries8010004
Google Scholar
[9]
Muzayanha, Soraya Ulfa, Cornelius Satria Yudha, Adrian Nur, Hendri Widiyandari, Hery Haerudin, Hanida Nilasary, Ferry Fathoni, and Agus Purwanto. (2019). A Fast Metals Recovery Method for the Synthesis of Lithium Nickel Cobalt Aluminum Oxide Material from Cathode Waste. Metals 9 (5)
DOI: 10.3390/met9050615
Google Scholar
[10]
Li, Q., Li, G., Fu, C., Luo, D., Fan, J., Zheng, J., ... & Li, L. (2015). A study on storage characteristics of pristine Li-rich layered oxide Li1. 20Mn0. 54Co0. 13Ni0. 13O2: effect of storage temperature and duration. Electrochimica Acta, 154, 249-258.
DOI: 10.1016/j.electacta.2014.12.071
Google Scholar
[11]
Lou, M., Fan, S. S., Yu, H. T., Xie, Y., Zhang, Q., Zhu, Y. R., ... & Tian, G. H. (2018). Mg- doped Li1. 2Mn0. 54Ni0. 13Co0. 13O2 nano flakes with improved electrochemical performance for lithium-ion battery application. Journal of Alloys and Compounds, 739, 607-615.
DOI: 10.1016/j.jallcom.2017.12.286
Google Scholar
[12]
Mishra,D., J. Hazard. Mater. (2008) "Bioleaching of spent hydroprocessing catalyst using acidophilic bacteria and its kinetic aspect" https://www.sciencedirect.com/science/article/abs/ pii/S0304389407011144
Google Scholar
[13]
Nayaka, G. P., K. V. Pai, G. Santhosh, and J. Manjanna. (2016). Recovery of Cobalt as Cobalt Oxalate from Spent Lithium Ion Batteries by Using Glycine as Leaching Agent. Journal of Environmental Chemical Engineering 4 (2)
DOI: 10.1016/j.jece.2016.04.016
Google Scholar
[14]
Ordoñez, J., E. J. Gago, and A. Girard. (2016). Processes and Technologies for the Recycling and Recovery of Spent Lithium-Ion Batteries. Renewable and Sustainable Energy Reviews 60: 195–205. ttps://doi.org/.
DOI: 10.1016/j.rser.2015.12.363
Google Scholar
[15]
Astuti, W., Hirajima, T., Sasaki, K., Okibe, N., 2016, Comparison of effectiveness of citric acid and other acids in leaching of low-grade Indonesian saprolitic ores, Minerals Engineering, 85, 1-16.
DOI: 10.1016/j.mineng.2015.10.001
Google Scholar
[16]
Rice, N. M. (2016) 'A hydrochloric acid process for nickeliferous laterites', Minerals Engineering, 88, p.28–52.
DOI: 10.1016/j.mineng.2015.09.017
Google Scholar
[17]
Agacayak T, Zedev V. Dissolution kinetics of a lateritic nickel ore in sulphuric acid medium [J]. Acta Montanistica Slovaca, 2012, 17(1): 33−41.batteries based on gated recurrent neuralnetwork," Energy, 175, pp.66-75, 2019.
Google Scholar
[18]
Bunjaku, A., Kekkonen, M., Pietilä, K. and Taskinen, P. (2012) 'Effect of mineralogy and reducing agent on reduction of saprolitic nickel ores', Mineral Processing and Extractive Metallurgy
DOI: 10.1179/1743285512y.0000000010
Google Scholar
[19]
Nafish, A. R., Salsabila, C. S., Ayu, M. P., Prawira, L. P. D. I., Amananti, K. S., and Yuliusman, 2020. Recovery of Ni Metal from Hydrotreating Spent Catalyst with Organic Acid Leaching and the Kinetics Study. AIP Conference Proceedings, 2255(September).
DOI: 10.1063/5.0014692
Google Scholar
[20]
Lee, Jin Young, S. Venkateswara Rao, B. Nagaphani Kumar, Dong Jun Kang, and B. Ramachandra Reddy. 2010. "Nickel Recovery from Spent Raneynickel Catalyst through Dilute Sulfuric Acid Leaching and Soda Ash Precipitation." Journal of Hazardous Materials 176 (1–3): 1122–25
DOI: 10.1016/j.jhazmat.2009.11.137
Google Scholar
[21]
Cheng, Qian, William M. Chirdon, Meiduan Lin, Kuber Mishra, and Xiaodong Zhou. (2019).Characterization, Modeling, and Optimization of a Single-Step Process for Leaching MetallicIons from LiNi 1/3 Co 1/3 Mn 1/3 O 2 Cathodes for the Recycling of Spent Lithium-Ion Batteries. Hydrometallurgy 185: 1– 11.
DOI: 10.1016/j.hydromet.2019.01.003
Google Scholar
[22]
Qiu, Z., Zhang, Y., Dong, P., Xia, S., Yao, Y., (2017). A facile method for synthesis of LiNi0.8Co0.15Al0.05O2 cathode material. Solid State Ionics 307, 73–78.
DOI: 10.1016/j.ssi.2017.04.011
Google Scholar
[23]
Zheng, Xiaohong, Zewen Zhu, Xiao Lin, Yi Zhang, Yi He, Hongbin Cao, and Zhi Sun. (2018). A Mini-Review on Metal Recycling from Spent Lithium Ion Batteries. Engineering 4 (3): 361–70.
DOI: 10.1016/j.eng.2018.05.018
Google Scholar
[24]
Xu, L., Zhou, F., Kong, J., Zhou, H., Zhang, Q., Wang, Q., & Yan, G. (2018). Influence of precursor phase on the structure and electrochemical properties of Li(Ni0. 6Mn0. 2Co0. 2)O2 cathode materials. Solid State Ionics, 324, 49-58.
DOI: 10.1016/j.ssi.2018.06.010
Google Scholar
[25]
Wood, M., Li, J., Ruther, R. E., Du, Z., Self, E. C., Meyer, H. M., Daniel, C., Belharouak, I., and Wood, D. L., 2020. Chemical Stability and Long-Term Cell Performance of Low-Cobalt, Ni-Rich Cathodes Prepared by Aqueous Processing for High-Energy Li-Ion Batteries. Energy Storage Materials, 24(May 2019), 188–197.
DOI: 10.1016/j.ensm.2019.08.020
Google Scholar
[26]
Petrovic, Sanja J., Grozdanka D. Bogdanovic, and Milan M. Antonjevic. 2018. "Leaching of Chalcopyrite with Hydrogen Peroxide in Hydrochloric Acid Solution." Transactions of Nonferrous Metals Society of China (English Edition) 28 (7): 1444–55.
DOI: 10.1016/S1003-6326(18)64788-0
Google Scholar
[27]
Harlow, J. E., Glazier, S. L., Li, J., & Dahn, J. R. (2018). Use of asymmetric average charge- and average discharge-voltages as an indicator of the onset of unwanted lithium deposition in lithium-ion cells. Journal of The Electrochemical Society, 165(16), A3595
DOI: 10.1149/2.0011816jes
Google Scholar