Bioplastic Films Derived from Corn Cob Waste and ZnO from Battery Waste: Mechanical Properties and Electrical Conductivity

Article Preview

Abstract:

Bioplastics or biopolymers are being developed as an alternative to tackle the problem of polymer waste, which causes pollution and greenhouse gas emissions. Cellulose derived from corn cobs can be a biopolymer alternative to synthetic polymers. Cellulose derived from corn cobs can replace conventional petroleum-based polymers as an alternative plastic material. Incorporating ZnO into the biopolymer matrix is projected to result in favourable characteristics and allow for a wider range of applications. This study aims to investigate the changes in the characteristics of bioplastics derived from corn cob waste and starch upon the incorporation of ZnO, with a special emphasis on mechanical properties and electrical conductivity. FTIR analysis shows that the incorporation of ZnO exhibited no impact on the structure of the bioplastic. Scanning electron microscopy (SEM) analysis revealed that the ZnO microparticles' morphology is irregular and rough. The average size of ZnO particles incorporated into the biopolymer matrix was 0.623 μm. Mechanical tests showed a positive correlation between the amount of ZnO and the tensile strength of bioplastics. The assessment of the electrical conductivity of the Bioplastic/ZnO composite indicates a notable enhancement with the inclusion of ZnO. Electrical conductivity shows a progressive increase from 2.13x10-15 S/m to 3.23x10-12 S/m, 7.42x10-11 S/m, and 2.03x10-10 S/m with the incorporation of ZnO as much as 0.03, 0.06, and 0.09 g, respectively. Generally, incorporating ZnO into bioplastics can enhance their tensile strength and electrical conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-163

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Vallejos, M. Trigo-López, A. Arnaiz, Á. Miguel, A.Muñoz, A. Mendía and J. Miguel García., From Classical to Advanced Use of Polymers in Food and Beverage Applications. Polymers (Basel), 14 (2022) 1-41

DOI: 10.3390/polym14224954

Google Scholar

[2] M. Amarakoon, H. Alenezi, S. Homer-Vanniasinkam, and M.Edirisingh, Environmental Impact of Polymer Fiber Manufacture. Macromol. Mater. Eng., 307(11) (2022) 1-20.

DOI: 10.1002/mame.202200356

Google Scholar

[3] X. Zhang, Z.Yin, S. Xiang, H. Yan, and H. Tian, Degradation of Polymer Materials in the Environment and Its Impact on the Health of Experimental Animals: A Review. Polymers, 16 (2024) 1-33.

DOI: 10.3390/polym16192807

Google Scholar

[4] A.K. Mohanty, F. Wu, R. Mincheva, M. Hakkarainen, D.M. Raquez, D.F. Mielewski, R. Narayan, A.N. Netravali and M. Misra, Sustainable polymers. Nat. Rev. Methods Primers, 2 (2022) 1-27

DOI: 10.1038/s43586-022-00124-8

Google Scholar

[5] R. Balart, N. Montanes, F. Dominici, T. Boronat, and S.Torres-Gine, Environmentally Friendly Polymers and Polymer Composites. Materials (Basel), 13(21) (2020) 1-6.

DOI: 10.3390/ma13214892

Google Scholar

[6] A. Samir, F. H. Ashour, A. A. Abdel Hakim and M. Bassyouni, Recent advances in biodegradable polymers for sustainable applications. npj Mat Degrad, 6(1) (2022) 1-28.

DOI: 10.1038/s41529-022-00277-7

Google Scholar

[7] E. Yousif, and R. Haddad, Photodegradation and photostabilization of polymers, especially polystyrene: review. Springerplus, 2 (2013) 1-32.

DOI: 10.1186/2193-1801-2-398

Google Scholar

[8] J. Vohlídal, Polymer degradation: a short review. Chem Teach Int, 3(2) (2021) 213-220.

Google Scholar

[9] W. Courtene-Jones, A. Martínez Rodríguez, and R.D. Handy, From microbes to ecosystems: a review of the ecological effects of biodegradable plastics. Emerg. Top. Life Sci., 6(4) (2022) 423-433.

DOI: 10.1042/etls20220015

Google Scholar

[10] J.M. Nduko and S. Taguchi, Microbial Production of Biodegradable Lactate-Based Polymers and Oligomeric Building Blocks From Renewable and Waste Resources. Front. bioeng. biotechnol., 8 (2021) 1-18

DOI: 10.3389/fbioe.2020.618077

Google Scholar

[11] M. Nasrollahzadeh, Z. Nezafat, N. Shafiei and F. Soleimani, Biodegradability properties of biopolymers, in Biopolymer-Based Metal Nanoparticle Chemistry for Sustainable Applications: Volume 1: Classification, Properties and Synthesis. Elsevier, 2021. pp.231-251.

DOI: 10.1016/b978-0-12-822108-2.00010-7

Google Scholar

[12] S. Rahman, J. Gogoi, S. Dubey and D. Chowdhury, Animal derived biopolymers for food packaging applications: A review. Int. J. Biol. Macromol., 255 (2024) 1-23.

DOI: 10.1016/j.ijbiomac.2023.128197

Google Scholar

[13] H. Khalili, A. Bahloul, E. Ablouh, H. Sehaqui, Z. Kassab, F.Z.S.A Hassani, and M. El Achaby, Starch biocomposites based on cellulose microfibers and nanocrystals extracted from alfa fibers (Stipa tenacissima). Int. J. Biol. Macromol.,226 (2023) 345-356.

DOI: 10.1016/j.ijbiomac.2022.11.313

Google Scholar

[14] Y. Liu , L. Zhang, Q. Ain, and Z. Tong, Efficient synthesis of cellulose acetate through one-step homogeneous acetylation of cotton cellulose in binary ionic liquids. Int. J. Biol. Macromol., 281 (2024) 1-9.

DOI: 10.1016/j.ijbiomac.2024.136306

Google Scholar

[15] N. Vidakis, M. Petousi, A. Maniadi, V. Papadakis and A. Moutsopoulou, The Impact of Zinc Oxide Micro-Powder Filler on the Physical and Mechanical Response of High-Density Polyethylene Composites in Material Extrusion 3D Printing. J. Compos. Sci., 6(10)(2022)1-17.

DOI: 10.3390/jcs6100315

Google Scholar

[16] J. Jayaramudu, K. Das, M. Sonakshi, G. S. M. Reddy, B. Aderibigbe, R. Sadiku, and S. S. Ray, Structure and properties of highly toughened biodegradable polylactide/ZnO biocomposite films. Int. J. Biol. Macromol., 64 (2014) 428-434.

DOI: 10.1016/j.ijbiomac.2013.12.034

Google Scholar

[17] A H D Abdullah, S Chalimah, I Primadona and M H G Hanantyo, Physical and chemical properties of corn, cassava, and potato starchs. IOP Conf. Ser. Earth Environ. Sci., 160 (1) (2018) 1-6.

DOI: 10.1088/1755-1315/160/1/012003

Google Scholar

[18] E. Mahdi and A. Dean, The Effect of Filler Content on the Tensile Behavior of Polypropylene/Cotton Fiber and poly(vinyl chloride)/Cotton Fiber Composites. Materials (Basel), 13(3) 2020 1-17.

DOI: 10.3390/ma13030753

Google Scholar

[19] N. Tazibt, M. Kaci, N. Dehouche, M. Ragoubi and L. I. Atanase. Effect of Filler Content on the Morphology and Physical Properties of Poly(Lactic Acid)-Hydroxyapatite Composites. Materials, 16 (2023) 1-15.

DOI: 10.3390/ma16020809

Google Scholar

[20] A.K. Radzimska and T. Jesionowski, Zinc Oxide—From Synthesis to Application: A Review. Materials, 7(4) (2014) 2833-2881.

DOI: 10.3390/ma7042833

Google Scholar

[21] H. Pang, L. Xu, D. X. Yan, and Z. M Li., Conductive polymer composites with segregated structures. Prog. Polym. Sci., 39(11) (2014) 1908-1933.

DOI: 10.1016/j.progpolymsci.2014.07.007

Google Scholar