[1]
G. Lin, M. Fukushima, Stochastic equilibrium programs and stochastic mathem- atical programs with equilibrium constraints: A Survey, Technical Report (2009).
Google Scholar
[2]
X. Chen, M. Fukushima, Expected residual minimization method for stochastic linear complementarity problems, Math. Oper. Res. 30: 1022-1038, (2005).
DOI: 10.1287/moor.1050.0160
Google Scholar
[3]
X. Chen, C. Zhang, M. Fukushima, Robust solution of monotone stochastic linear complementarity problems, Math. Program, B11751-80, (2007).
DOI: 10.1007/s10107-007-0163-z
Google Scholar
[4]
F.H. Clarke, Optimization and Non-smooth Analysis, John Wiley and Sons, New York, (1983).
Google Scholar
[5]
H. Fang, X. Chen, M. Fukushima, Stochastic R0 matrix linear complementarity problems, SIAM J. Optim. 18: 482-506, (2007).
DOI: 10.1137/050630805
Google Scholar
[6]
G. Lin, X. Chen, M. Fukushima, New rstricted (NCP) function and their applications to stochastic (NCP) and stochastic (SNCP), (2006).
Google Scholar
[7]
C. Ling, L. Qi, G. Zhou, Caccetta, The SC1 property of an expected residual functionarising from stochastic complementarity problems, Oper. Res. Lett., 36: 456-460, (2008).
DOI: 10.1016/j.orl.2008.01.010
Google Scholar
[8]
P.E. Pfeiffer, Probability for Applications, Springer-Verlag, New York Inc., (1990).
Google Scholar
[9]
G. Lin, X. Chen and M. Fukushima, Solving stochastic mathematical programs with equilibrium constraint via approximation and smoothing implicit programming with penalization, Math. Program, Ser. B116: 343-368, (2009).
DOI: 10.1007/s10107-007-0119-3
Google Scholar
[10]
L. Qi, A. Shapiro, C. Ling, Differentiability and semi-smoothness properties of integral functions and their applications, Math. Program Ser. A 102: 223-248, (2005).
DOI: 10.1007/s10107-004-0523-x
Google Scholar
[11]
L. Qi, J. Sun, A non-smooth version of Newton method, Math. Program, 58: 353-367, (1993). Huihua Zhu, The Criteria Of Specific Shape Inverse M − Matrices, Xiangtan University Master's Press (2007).
Google Scholar