Viscoelastic Characterization of Fiber-Reinforced Elastomeric Composites at Finite Strain

Abstract:

Article Preview

A viscoelastic model is developed to describe the mechanical response of fiber-reinforced elastomeric composites at large deformation. A continuum approach is used to model the macroscopic mechanical behavior of elastomeric materials reinforced with unidirectional fibers, in which the resin and fibers are regarded as a single homogenized anisotropic material. The anisotropic viscoelastic constitutive model is developed considering transient reversible network theory. An efficient computational algorithm based on micromechanical modeling is proposed to relate the material parameters of constitutive model to the mechanical properties of composite constituents at finite strain. The microstructure is identified by a representative volume element (RVE) and it is subjected to large deformation with considering the conformity of opposite boundaries. The material parameters of the viscoelastic constitutive law are determined based on the response of heterogeneous microstructure which is examined under different loading conditions.

Info:

Periodical:

Advanced Materials Research (Volumes 123-125)

Edited by:

Joong Hee Lee

Pages:

603-606

DOI:

10.4028/www.scientific.net/AMR.123-125.603

Citation:

M. T. Abadi "Viscoelastic Characterization of Fiber-Reinforced Elastomeric Composites at Finite Strain", Advanced Materials Research, Vols. 123-125, pp. 603-606, 2010

Online since:

August 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.