[1]
M. Nalbant, A. Altin, and H. Gokkaya, The effect of cutting speed and cutting tool geometry on machinability properties of nickel-base Inconel 718 super alloys, Materials & Design, vol. 28, pp.1334-1338, (2007).
DOI: 10.1016/j.matdes.2005.12.008
Google Scholar
[2]
F. Klocke and G. Eisenblätter, Dry Cutting, CIRP Annals - Manufacturing Technology, vol. 46, pp.519-526, (1997).
DOI: 10.1016/s0007-8506(07)60877-4
Google Scholar
[3]
Y. Kamata and T. Obikawa, High speed MQL finish-turning of Inconel 718 with different coated tools, Journal of Materials Processing Technology, vol. 192-193, pp.281-286, (2007).
DOI: 10.1016/j.jmatprotec.2007.04.052
Google Scholar
[4]
N. R. Dhar, M. W. Islam, S. Islam, and M. A. H. Mithu, The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI-1040 steel, Journal of Materials Processing Technology, vol. 171, pp.93-99, (2006).
DOI: 10.1016/j.jmatprotec.2005.06.047
Google Scholar
[5]
A. Attanasio, M. Gelfi, C. Giardini, and C. Remino, Minimal quantity lubrication in turning: Effect on tool wear, Wear, vol. 260, pp.333-338, (2006).
DOI: 10.1016/j.wear.2005.04.024
Google Scholar
[6]
P. S. Sreejith, Machining of 6061 aluminium alloy with MQL, dry and flooded lubricant conditions, Materials Letters, vol. 62, pp.276-278, (2008).
DOI: 10.1016/j.matlet.2007.05.019
Google Scholar
[7]
A. S. M. Rahman, M.U. Salam, Experimental Evaluation on the Effect of Minimal Quantities of Lubricant in Milling, International Journal of Machine Tools & Manufacture, vol. 42, pp.539-547, (2002).
DOI: 10.1016/s0890-6955(01)00160-2
Google Scholar
[8]
F. Klocke and G. Eisenblatter, Machinability Investigation of the Drilling Process Using Minimal Cooling Lubrication Techniques, Production Engineering, vol. 4, pp.19-24, (1997).
Google Scholar
[9]
E. O. Ezugwu, J. Bonney, and Y. Yamane, An overview of the machinability of aeroengine alloys, Journal of Materials Processing Technology, vol. 134, pp.233-253, (2003).
DOI: 10.1016/s0924-0136(02)01042-7
Google Scholar
[10]
Metal Handbook vol. Vol. 9: ASM International, USA, (1990).
Google Scholar
[11]
A. Devillez, F. Schneider, S. Dominiak, D. Dudzinski, and D. Larrouquere, Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools, Wear, vol. 262, pp.931-942, (2007).
DOI: 10.1016/j.wear.2006.10.009
Google Scholar
[12]
E. O. Ezugwu, Z. M. Wang, and A. R. Machado, The machinability of nickel-based alloys: a review, Journal of Materials Processing Technology, vol. 86, pp.1-16, (1998).
Google Scholar
[13]
P. C. Jindal, A. T. Santhanam, U. Schleinkofer, and A. F. Shuster, Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning, International Journal of Refractory Metals and Hard Materials, vol. 17, pp.163-170, (1999).
DOI: 10.1016/s0263-4368(99)00008-6
Google Scholar
[14]
C. H. H. A. Jawaid, A. Abdullah., Tool wear characteristics in Turning Titanium Alloy Ti-6246, Journal of Materials Processing Technology, vol. 92-93, pp.329-334, 1999.E. O.
DOI: 10.1016/s0924-0136(99)00246-0
Google Scholar
[15]
Y. Kamata and T. Obikawa, High speed MQL finish-turning of Inconel 718 with different coated tools, Journal of Materials Processing Technology, vol. 192-193, pp.281-286, (2007).
DOI: 10.1016/j.jmatprotec.2007.04.052
Google Scholar
[16]
Y.S. Liao, H.M. Lin. 'Mechanism of minimum quantity lubrication in high speed milling of hardened steel, Journal of Machine Tool and Manufacture, 47, pp.1660-1666, (2007).
DOI: 10.1016/j.ijmachtools.2007.01.007
Google Scholar
[17]
Ezugwu, J. Bonney, D. A. Fadare, and W. F. Sales, Machining of nickel-base, Inconel 718, alloy with ceramic tools under finishing conditions with various coolant supply pressures, Journal of Materials Processing Technology, vol. 162-163, pp.609-614, (2005).
DOI: 10.1016/j.jmatprotec.2005.02.144
Google Scholar