Chemical Characterization of Mesoporous Material Supported ZnO Nanoparticles for Hydrogen Sulfide Capture from Gas Streams

Article Preview

Abstract:

A series of zinc oxide-modified mesoporous SBA-15 materials were synthesized. The desulphurization test with a gas mixture containing 0.1 vol % hydrogen sulfide was carried out on these materials. Materials before and after the desulphurization test were analyzed using a variety of characterization techniques. The results suggest that zinc oxide modification can accelerate the transformation from a mesoporous to a zeolitic phase. The sample with the zinc content higher than 15.5 wt % shows the highest hydrogen sulfide breakthrough capacity up to 177.3 mg S/g.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 129-131)

Pages:

143-148

Citation:

Online since:

August 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Lauch, A. Subrenat, P. Cloirec, Langmuir 19 (2003), p.10869.

Google Scholar

[2] T.J. Bandosz, Carbon 37(1999), p.483.

Google Scholar

[3] N.T. Danh, T.J. Bandosz, Carbon 43 (2005), p.359.

Google Scholar

[4] F. Adib, A. Bagreev, T.J. Bandosz, Langmuir 16 (2000), p. (1980).

Google Scholar

[5] A. Ionescu, A. Allouche, J. Phys. Chem. B 106 (2002), p.9359.

Google Scholar

[6] D.N. Thanh, K. Block, T.J. Bandosz, Chemosphere 59 (2005), p.343.

Google Scholar

[7] Y.H. Yeom, Y. Kim, J. Phys. Chem. 100 (1996), p.8373.

Google Scholar

[8] N. Heo, C. Chun, J. Park, W. T. Lim, M. Park, S. Li, L. Zhou, J. Phys. Chem. B 106 (2002), p.4578.

Google Scholar

[9] J. Zhang, Y. Wang, D. Wu, Energ. Convers. Manage. 44 (2003), p.357.

Google Scholar

[10] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359 (1992), p.710.

Google Scholar

[11] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114 (1992), p.10834.

DOI: 10.1021/ja00053a020

Google Scholar

[12] D.Y. Zhao, J.L. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279 (1998) , p.548.

Google Scholar

[13] A. Davidson, Curr. Opin. Colloid Interf. Sci. 7 (2002), p.92.

Google Scholar

[14] U. Ciesla, F. Schüth, Micropor. Mesopor. Mater. 27 (1999), p.131.

Google Scholar

[15] M.M.L.R. Carrott, A.J.E. Candeias, P.J.M. Carrott, P.I. Ravikovitch, A.V. Neimark, A.D. Sequeira, Micropor. Mesopor. Mater. 47 (2001), p.323.

DOI: 10.1016/s1387-1811(01)00394-8

Google Scholar

[16] D. Kumar, K. Shumacher, C. du F., M von Hohenesche, Grün, K.K. Unger, Colloids Surf. A 187-188 (2001), p.109.

Google Scholar

[17] D.T. On, S. Kaliaguine, Angew. Chem. Int. Ed. 40 (2001), p.3248.

Google Scholar

[18] Y. Han, S. Wu, Y.Y. Sun, D.S. Li, D. Li, F. -S. Xiao, J. Liu, X. Zhang, Chem. Mater. 14 (2002), p.1144.

Google Scholar

[19] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57 (4) (1985), p.603.

DOI: 10.1002/9783527619474.ch11

Google Scholar

[20] V.I. Nefedov, M.N. Firsov, I.S. Shaplygin, J. Electron. Spectrosc. Relat. Phenom. 26 (1982), p.65.

Google Scholar

[21] L.S. Dake, D.R. Baer, J.M. Zachara, Surf. Interf. Anal. 14 (1989), p.71.

Google Scholar

[22] B.R. Strohmeier, D.M. Hercules, J. Catal. 86 (1984), p.266.

Google Scholar

[23] R.V. Siriwardane, J.M. Cook, J. Colloid Interface Sci. 104 (1985), p.250.

Google Scholar

[24] D. Brion, Appl. Surf. Sci. 5 (1980), p.133.

Google Scholar

[25] A.J.H. Maldonado, R.T. Yang, D. Chinn, C.L. Munson, Langmuir 19 (2003), p.2193.

Google Scholar