Adsorption of Dibenzothiophene on Transition Metals Loaded Activated Carbon

Article Preview

Abstract:

Transition metal-modified carbon-based adsorbents were prepared by impregnating activated carbon with solutions of copper, cobalt or nickel chloride or nitrate. The mixtures were dried and then calcined under nitrogen stream. The surface metal species were analyzed by XRD technique and the surface oxygen-containing groups were characterized by FTIR. Their adsorption capacities for dibenzothiophene (DBT) were measured by using DBT-containing n-octane solution as model oil. Experimental results show that the metal species on the carbon surface could be controlled by the calcination process under nitrogen atmosphere. Both the transition metal precursors and kinds of metal species on the carbon surface have significant effects on DBT adsorption capacity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-148

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Song: Catal. Today Vol. 86 (2003), p.211.

Google Scholar

[2] A.J. Hernandez-Maldonado, S.D. Stamatis, R.T. Yang, A.Z. He, W. Cannella: Ind. Eng. Chem. Res. Vol. 43 (2004), p.769.

Google Scholar

[3] A.J. Hernandez-Maldonado, R.T. Yang: Ind. Eng. Chem. Res. Vol. 42 (2003), p.3103.

Google Scholar

[4] A.J. Hernandez-Maldonado, R.T. Yang: AIChE J. Vol. 50 (2004), p.791.

Google Scholar

[5] A.J. Hernandez-Maldonado, R.T. Yang, Ind. Eng. Chem. Res. Vol. 42 (2003), p.123.

Google Scholar

[6] S.G. McKinley, R.J. Angelici, Chem. Commun. Vol. (2003), p.2620.

Google Scholar

[7] S. Reut, A. Prakash: Fuel Proc. Tech. Vol. 87 (2006), p.217.

Google Scholar

[8] R.T. Yang, A.J. Hernandez-Maldonado, F.H. Yang: Science Vol. 301 (2003), p.79.

Google Scholar

[9] A.J. Hernandez-Maldonado, S F.H. Yang, G.S. Qi, R.T. Yang: Appl. Catal. B: Environ. Vol. 56 (2005), p.111.

Google Scholar

[10] A. Takahashi, F.H. Yang, R.T. Yang: Ind. Eng. Chem. Res. Vol. 41(2002), p.2487.

Google Scholar

[11] A.J. Hernandez-Maldonado, S.D. Stamatis, R.T. Yang, A.Z. He, W. Cannella: Ind. Eng. Chem. Res. Vol. 43 (2004), p.769.

Google Scholar

[12] X. Ma, M. Sprague, C. Song: Ind. Eng. Chem. Res. Vol. 44 (2005), p.5768.

Google Scholar

[13] X. Ma, L. Sun, C. Song: Catal. Today Vol. 77 (2002), p.107.

Google Scholar

[14] J. Kim, X. Ma, A. Zhou, C. Song: Catal. Today Vol. 111 (2006), p.74.

Google Scholar

[15] Y. Sano, K. Choi, Y. Korai, I. Mochida: Appl. Catal. B Environ. Vol. 49 (2004), p.219.

Google Scholar

[16] Y. Sano, K. Choi, Y. Korai, I. Mochida: Energy & Fuels Vol. 18 (2004), p.644.

Google Scholar

[17] Y. Sano, K. Sugahara, K. Choi, Y. Korai, I. Mochida: Fuel Vol. 84 (2005), p.903.

Google Scholar

[18] M. Yu, Z. Li, Q. Xia, H. Xi, S. Wang: Chem. Eng. J. Vol. 132 (2007), p.233.

Google Scholar

[19] V. Selvavathi, V. Chidambaram, A. Meenakshisundaram, B. Sairam, B. Sivasankar: Catalysis Today Vol. 141 (2009), p.99.

DOI: 10.1016/j.cattod.2008.05.009

Google Scholar

[20] M. Seredych, T.J. Bandosz: Energy Fuels, Vol. 23(2009), p, 3737.

Google Scholar

[21] P.E. Fanning, M.A. Vannice: Carbon Vol. 31(1993), p.721.

Google Scholar

[22] J.L. Figueiredo, M.F.R. Pereira, M.M. A Freitas: Carbon Vol. 37 (1999), p.1379.

Google Scholar

[23] A. Zhou, X. Ma, C. Song: Appl. Catal. B: Environ. Vol. 87 (2009), p.190.

Google Scholar