Oxidative Removal of Dibenzothiophene by H2O2 over Activated Carbon-Supported Phosphotungstic Acid Catalysts

Article Preview

Abstract:

Phosphotungstic acid (HPW) supported on activated carbon (AC) combined with hydrogen peroxide formed an oxidative desulfurizaiton (ODS) system to oxidize sulfur-containing compounds in diesel fuel. Dibenzothiophene (DBT) dissolved in n-octane was selected as a model feedstock for studying this new ODS system. The HPW/AC catalysts were characterized with XRD, FTIR and N2 adsorption-desorption measurements. HPW was highly dispersed on the surface of carbon support. It was found that the DBT adsorption capacity decreased from 42 mg S/g to 33.13 mg S/g as HPW loading amount increased from 0 to 15 wt.%. Oxidative removal of DBT in the model oil significantly increased with increasing HPW loadings on the support from 0 to 10 wt.%. 100 % DBT was removed by using the catalysts with HPW content higher than 10 wt. %. At 80 °C, oxidative removal of DBT reached 100 % after 40 min of reaction when O/S molar ratio ranged from 4 to 10.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

126-132

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I.V. Babich and J.A. Moulijn: Fuel Vol. 82(2003), p.607.

Google Scholar

[2] A. Attar and W. H. Corcoran. Ind. Eng. Chem. Prod. Res. Dev. Vol. 17(1978), p.102.

Google Scholar

[3] G.E. Dolbear and E.R. Skov: Prepr. -Am. Chem. Soc, Div. Pet. Chem. Vol. 45 (2000), p.375.

Google Scholar

[4] P.S. Tam, J.R. Kittrel and J.W. Eldridge: Ind. Eng. Chem. Res. Vol. 29 (1990), p.321.

Google Scholar

[5] J.M. Fraile, J.I. García, B. Lázaro and J.A. Mayoral: Chem. Commun. (1998), p.1807.

Google Scholar

[6] D. Wang, E.W. Qian, H. Amano, K. Okata, A. Ishihara and T. Kabe: Appl Catal A: Gen Vol. 253 (20031), p.91.

Google Scholar

[7] F. Zannikos, E. Lois, S. Stournas: Fuel Process. Technol. Vol. 42 (1995), p.35.

Google Scholar

[8] W. Gore, U.S. Patent 6, 160, 193. (2000).

Google Scholar

[9] A.S. Rappas, U.S. Patent 6, 402, 940. (2002).

Google Scholar

[10] S. Otsuki, T. Nonaka, N. Takashima, W. Qian, A. Ishihara, T. Imai: Energy Fuel Vol. 14 (2000), p.1234.

Google Scholar

[11] F.M. Collins, A.R. Lucy, C. Sharp: J. Mol. Catal. A: Chem. Vol. 117 (1997), p.397.

Google Scholar

[12] H. Mei, B.W. Mei, T.F. Yen: Fuel Vol. 8 2(2003), p.405.

Google Scholar

[13] A. Treiber, P.M. Dansette, H. El Amri, J.P. Girault, D. Ginderow, J.P. Mornon: J. Am. Chem. Soc. Vol. 119 (1997), p.1565.

Google Scholar

[14] V. Hulea, F. Fajula, J. Bousquet: J Catal Vol. 198(2001), p.179.

Google Scholar

[15] J. Palomeque, J. Clacens, F. Figueras: J Catal Vol. 211(2002), p.103.

Google Scholar

[16] F. Al-Shahrani, T. Xiao, S.A. Llewellyn, S. Barri, Z. Jiang, H. Shi, G. Martinie, M.L.H. Green: Appl Catal B: Environ Vol. 73(2007), p.311.

Google Scholar

[17] D. Zhao, J. Wang, E. Zhou: Green Chem vol. 9(2007), p.1219.

Google Scholar

[18] J.L. García-Gutiérrez, G.A. Fuentes, M.E. Hernández-Terán, P. García, F. Murrieta-Guevara, F. Jiménez-Cruz: Appl Catal A: Gen Vol. 334 (2008), p.366.

DOI: 10.1016/j.apcata.2007.10.024

Google Scholar

[19] J.M. Campos-Martin, M.C. Capel-Sanchez, J.L.G. Fierro: Green Chem Vol. 6 (2004), p.557.

Google Scholar

[20] K. Yazu, Y. Yamamoto, T. Furuya, K. Miki, K. Ukegawa: Energy Fuel Vol. 15 (2001), p.1535.

Google Scholar

[21] F. Villaseñor, O. Loera, A. Campero, G. Viniegra-González: Fuel Process. Technol. Vol. 86 (2004), p.49.

Google Scholar

[22] D. Huang, Y.J. Wang, L.M. Yang and G.S. Luo: Ind Eng Chem Res Vol. 45 (2006), p.1880.

Google Scholar

[23] D. Huang, Z. Zhai, Y.C. Lu, L.M. Yang and G.S. Luo: Ind Eng Chem Res Vol. 46 (2007), p.1447.

Google Scholar

[24] K. Yazu, M. Makino and K. Ukegawa: Chem Lett 33 (2004), p.1306.

Google Scholar

[25] C. Li, Z. Jiang, J. Gao, Y. Yang, S. Wang and F. Tian: Chem Eur J Vol. 10 (2004), p.2277.

Google Scholar

[26] H. Lü, J. Gao, Z. Jiang, F. Jing, Y. Yang and G. Wang: J Catal Vol. 239 (2006), p.369.

Google Scholar

[27] J. Gao, S. Wang, Z. Jiang, H. Lu, Y. Yang and F. Jing: J Mol Catal A: Chem Vol. 258 (2006), p.261.

Google Scholar

[28] G. Yu, S. Lu, H. Chen and Z. Zhu: Energy Fuel Vol. 19 (2005), p.447.

Google Scholar

[29] A. Zhou, X. Ma, and C. Song: J. Phys Chem B Vol. 110 (2006), p.4699.

Google Scholar

[30] D. Huang, Z. Zhai, Y.C. Lu, L.M. Yang and G.S. Luo: Ind Eng Chem Res Vol. 46 (2007), p.1447.

Google Scholar

[31] A. Bielanski and A. Lubanska: J. Mol. Catal. A: Chem. Vol. 224 (2004), p.179.

Google Scholar

[32] P. Vazquez, L. Pizzio, C. Caceres, M. Blanco, H. Thomas, E. Alesso, L. Finkielsztein, B. Lantano, G. Moltrasio and J. Aguirre: J. Mol. Catal. A: Chem. Vol. 161 (2000), p.223.

Google Scholar

[33] M.E. Chimienti, L.R. Pizzio, C.V. Cáceres and M.N. Blanco: Appl. Catal. A: Gen., Vol. 208 (2001), p.7.

Google Scholar