Role of Nanocrystalline Titania Phases in the Photocatalytic Oxidation of NO at Room Temperature

Article Preview

Abstract:

Nanocrystalline TiO2 powders were prepared by the sol-gel method and evaluated in the NO photocatalytic oxidation. Samples annealed at 200 and 500°C (TiO2-P-200, TiO2-P-500) were characterized by nitrogen adsorption, XRD-Rietveld refinements, TEM, FTIR and UV-vis spectroscopies. The photocatalytic test of the sol-gel TiO2 samples was carried out in an insulated chamber with 10 ppm of NO, using a 365-nm UV light lamp; the test results were compared with those obtained with a commercial catalyst (P25). Improved photoactivity (89 % of NO oxidized in 60 min) was obtained with the TiO2-P-200 solid which showed high surface area, small crystallite size, higher amount of OH and highly abundant brookite phase (37.2 %) coexisting with the anatase phase (62.8 %). The photo-oxidation activity of the sol-gel catalyst annealed at 500 °C (TiO2-P-500) showed changes in its textural and morphologic properties and therefore, less photoactivity. Sol-gel photocatalysts could be a good option for abating pollution in both indoor and outdoor environments at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

96-104

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N Stock, J Séller, K Vinodgal, P Kamat: Environ. Sci. Techmol. Vol. 34 (2000), p, 1747.

Google Scholar

[2] J Lee, Y Yang: Mater. Chem. Phys. Vol 93 (2005), p.237.

Google Scholar

[3] M Takeuchi, T Kimura, M Hidaka, M Rakhmawaty, M Anpo: J. Catal. Vol. 246 (2007), p.235.

Google Scholar

[4] K Nishijima, B Ohtani, X Yan, T Kamai, T Chiyoya, T Tsubota, N Murakami, T Ohno: Chem, Phys. Vol. 339 (2007), p.64.

DOI: 10.1016/j.chemphys.2007.06.014

Google Scholar

[5] F Shiraishi, S Yamaguchi, Y Ohbuchi: Chem. Eng. Sci. Vol. 58 (2003), p.929.

Google Scholar

[6] F Shiraishi, D Ohkubo, K Toyoda, S Yamaguchi: Chem. Eng. Sci. Vol. 114 (2005), p.159.

Google Scholar

[7] U Diebold: Surf. Sci. Reports Vol. 48 (2001), p.53.

Google Scholar

[8] I Arabatzis, S Antonaraki, T Stergiopoulos, A Hiskia, E Papaconstantinou, M Bernard, P Falaras: J. Photochem. Photobiol. A Vol. 149 (2002), p.237.

DOI: 10.1016/s1010-6030(01)00645-1

Google Scholar

[9] J Zhao, X Yang: Building and Environment Vol. 38 (2003), p.645.

Google Scholar

[10] C Ao, S Lee, C Mak, L Chan: Appl. Catal. B Vol. 42 (2003), p.119.

Google Scholar

[11] S Devahasdin, C Fan, K Li, D Chen: J. Photochem. Photobiol. A Vol. 156 (2003), p.161.

Google Scholar

[12] T Maggos, J Bartzis, M Liakou, C Gobin: J. Hazardous Materials Vol. 146 (2007), p.668.

DOI: 10.1016/j.jhazmat.2007.04.079

Google Scholar

[13] T Lim, S Jeon, S Kim, J Gyenis: J. Photochem. Photobiol. A Vol. 134 (2000), p.209.

Google Scholar

[14] H Ibrahim, H Lasa: Appl. Catal. B Vol. 38 (2002), p.201.

Google Scholar

[15] D Uhlman, G Teowe: J. Sol Gel Sci. Thecnol. Vol. 13 (1998), p.153.

Google Scholar

[16] Y Hu, H Tsai, C Huang: J. Euro. Ceram. Soc. Vol. 23 (2003), p.691.

Google Scholar

[17] I Kuznetsova, V Blaskov, L Znaidi: Mater. Sci. Eng. B Vol. 137 (2007), p.31.

Google Scholar

[18] R Bhave, B Lee: Mater. Sci. Eng. A Vol. 467 (2007), p.146.

Google Scholar

[19] D Bahnemann: Res. Chem. Intermed. Vol. 26 (2000), p.207.

Google Scholar

[20] Rodríguez-Carbajal: J. Phys. B Vol. 192 (1993), p.55.

Google Scholar

[21] X Orlhac, C Fillet, P Deniard, A Dulac, R Brec: Appl. Cryst. Vol. 34 (2001), p.114.

DOI: 10.1107/s0021889800017908

Google Scholar

[22] L Fuentes (1998) Análisis de minerales y el método de Rietveld, Sociedad Mexicana de Cristalografía, A.C., Mexico.

Google Scholar

[23] S Castillo, M Morán-Pineda, V Molina, R Gómez, T López: Appl. Catal. B Vol. 15 (1998), p.203.

Google Scholar

[24] E Sánchez, T López: Mat. Lett. Vol. 25 (1995), p.271.

Google Scholar

[25] K Reddy, S Manorama, A Reddy: Mat. Chem. Phys. Vol. 78 (2002), p.239.

Google Scholar

[26] C Sanchez, J Livage, M Henry, M Babonneau: J. Non-Cryst- Solids Vol. 100 (1988), p.65.

Google Scholar

[27] H Q Wang, Z B Wu, W R Zhao, B H Guan: Chemosfere Vol. 66 (2007), p.185.

Google Scholar

[28] H Zhang, J Banfield: J. Mater. Chem. Vol. 8 (1998), p. (2073).

Google Scholar

[29] H Zhang, J Banfield: J. Phys. Chem. B Vol. 104 (2000), p.3481.

Google Scholar

[30] K Zhu, M Zhang, J Hong, Z Yin: Mater. Sci. Eng. A Vol. 403 (2005), p.87.

Google Scholar

[31] J Ovenstone: J. Mater Sci. Vol. 36 (2001), p.1325.

Google Scholar

[32] C Radhica, B Bhave, I Lee: Mater. Sci. Eng. A Vol. 467 (2007), p.146.

Google Scholar

[33] J A Wang, R Lima-Ballesteros, T López, A Moreno, R Gómez, O Novaro, X Bokhimi: J Phys. Chem. B Vol. 105 (2001), p.9692.

Google Scholar

[34] K Okada, N Yamamoto, Y Kameshima, A Yasumori: J. Am. Ceram. Soc. Vol. 84 (2001), p.1591.

Google Scholar

[35] X Bokhimi, A Morales, O Novaro, T López, E Sánchez, R Gómez: J. Mater. Res. Vol. 10 (1995), p.2788.

Google Scholar

[36] Y Sun, T Egawa, L Zhang, X Yao: Jpn. J. Appl. Phys. 41 (2002), p. L945.

Google Scholar

[37] K M Reddy, C V Gopal Reddy, S V Manorama: J. Solid State Chem. Vol. 158 (2001), p.180.

Google Scholar

[38] T Tora, K Hiroshi, S Ping, K Akihik, O Masahiro: Jpn. J. Appl. Phys. 5B 39 (2000), p.3160.

Google Scholar

[39] L Bras: J. Chem. 90 (1986), p.2555.

Google Scholar

[40] J Rino, N Studart: Phys. Rev. B Vol. 59 (1999), p.6643.

Google Scholar

[41] K Kanaca, J White: J. Phys. Chem. 86 (1982), p.4708.

Google Scholar

[42] M Ampo, Y Ichihashi, M Takeuchi, H Yamashita: Res. Chem. Intermed. Vol. 24 (1998), p.143.

Google Scholar

[43] U Diebold: Surf. Sci. Reports Vol. 48 (2003), p.53.

Google Scholar

[44] I Kuznetsova, V Blaskov, L Znaidi: Mater. Sci. Eng. B Vol. 137 (2007), p.31.

Google Scholar