Promotional Effect of Gadolinia on CuO Catalyst for Reduction of NO by Activated Carbon

Article Preview

Abstract:

The Gd2O3 (gadolinia) modified CuO/AC catalysts for NO reduction by activated carbon were prepared and characterized by XRD, TPD-MS, EPR, XPS techniques. The results show that adding a small amount of Gd2O3 in the CuO catalyst can improve effectively its catalytic performance for NO reduction by activated carbon, and the appropriate molar ratio of Gd2O3/CuO is 0.03:1. The promotional effect of Gd2O3 stems from the cooperative effects between CuO and Gd2O3. The presence of Gd2O3 in the catalyst can alter the chemical state and environment of the CuO active sites and improve the catalytic activation of carbon by CuO to form more carbon reactive sites, resulting in the quicker transfer and release of oxygen decomposed from NO. The carboxylic groups on the surface of activated carbon play an important role in the catalytic reduction of NO by carbon at temperature below 300 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-86

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.S. Epling, L.E. Campbell, A. Yezerets, N.W. Currier, J.E. Parks II: Catal. Rev. 46 (2004), p.163.

Google Scholar

[2] V.I. Parvulescu, P. Grange, B. Delmon : Catal. Today 46 (1998), p.233.

Google Scholar

[3] G. Marban, R. Antuna, A.B. Fuertes : Appl. Catal. B. 41 (2003), p.323.

Google Scholar

[4] G.S. Szymanski, T. Grzybek, H. Papp, Catal. Today 90 (2004), p.51.

Google Scholar

[5] L.Y. Hsu, H. Teng: Appl. Catal. B 35 (2001), p.21.

Google Scholar

[6] N. Shirahama, I. Mochida, Y. Korai, K.H. Choi, T. Enjoji, T. Shimohara, A. Yasutake: Appl. Catal. B 52 (2004), p.173.

Google Scholar

[7] N. Shirahama, I. Mochida, Y. Korai, K.H. Choi, T. Enjoji, T. Shimohara, A. Yasutake: Appl. Catal. B 57 (2005), p.237.

DOI: 10.1016/j.apcatb.2004.04.004

Google Scholar

[8] E. Bekyarova, M. Khristova, D. Mehandjiev: J. Colloid Interf. Sci. 213 (1999), p.400.

Google Scholar

[9] H.H. Tseng, M.Y. Wey, Y.S. Liang, K.H. Chen: Carbon 41 (2003), p.1079.

Google Scholar

[10] Z.H. Zhu, L.R. Radovic, G.Q. Lu: Carbon 38 (2000), p.451.

Google Scholar

[11] N.B. Stankova, M.S. Khristova, D.R. Mehandjiev: J. Colloid Interf. Sci. 241 (2001), p.439.

Google Scholar

[12] L.Y. Hsu, H.S. Teng: Appl. Catal. B 42 (2003), p.69.

Google Scholar

[13] A. Obuchi, I. Kaneko, J. Oi, A. Ohi, A. Ogata, G.R. Bamwenda, S. Kushiyama: Appl. Catal. B 15 (1998), p.37.

Google Scholar

[14] R.Q. Long, R.T. Yang: Appl. Catal. B 27 (2000), p.87.

Google Scholar

[15] M. Haneda, Y. Kintaichi, H. Hamada: Catal. Today 54 (1999), p.391.

Google Scholar

[16] L.L. Ren, T. Zhang, D.B. Liang, C.H. Xu, J.W. Tang, L.W. Lin: Appl. Catal. B 35 (2002), p.317.

Google Scholar

[17] M.D. Fokema, J.Y. Ying: Catal. Rev. 43 (2001), p.1.

Google Scholar

[18] J.A.Z. Pieterse, H. Top, F. Vollink, K. Hoving, R.W. van den Brink: Chem. Eng. J. 120 (2006), p.17.

Google Scholar

[19] X. Zhang, A.B. Walters, M.A. Vannice: Catal. Today 27 (1996), p.41.

Google Scholar

[20] M.D. Fokema, J.Y. Ying: J. Catal. 192 (2000), p.54.

Google Scholar

[21] J.H. Holles, M.A. Switzer, R.J. Davis: J. Catal. 190 (2000), p.247.

Google Scholar

[22] S. Wisniewski, J. Belkouch, L. Monceaux: C.R. Acad. Sci. Series IIC Chem. 3 (2000), p.443.

Google Scholar

[23] Y.Y. Xue, G.Z. Lu, Y. Guo, Y.L. Guo, Y.Q. Wang, Z.G. Zhang: Appl. Catal. B 79 (2008), p.262.

Google Scholar

[24] C.Y. Lee, T.H. Jung, B.H. Ha: Appl. Catal. B 9 (1996), p.77.

Google Scholar

[25] A. Martinez-Arias, R. Cataluna, J.C. Conesa, J. Soria: J. Phys. Chem. B 102 (1998), p.809.

Google Scholar

[26] A.B. Hungria, A. Iglesias-Juez, A. Martinez-Arias, M. Fernandez-Garcia, J.A. Anderson, J.C. Conesa, J. Soria: J. Catal. 206 (2002), p.281.

Google Scholar

[27] A. Murali, R.P. S. Chakradhar, J. L. Rao: Physica B 364 (2005), p.142.

Google Scholar

[28] E. Malchukova, B. Boizot, D. Ghaleb, G. Petite: J. Non-cryst. Solids 352 (2006), p.297.

Google Scholar

[29] N. Barrabes, J. Just, A. Dafinov, F. Medina, J.L.G. Fierro, J.E. Sueiras, P. Salagre, Y. Cesteros: Appl. Catal. B 62 (2006), p.77.

DOI: 10.1016/j.apcatb.2005.06.015

Google Scholar

[30] R. Nickolov, T. Tsoncheva, D. Mehandjiev: Fuel 81 (2002), p.203.

Google Scholar

[31] B. Glorieux, R. Berjoan, M. Matecki, A. Kammouni, D. Perarnau: Appl. Surf. Sci. 253 (2007), p.3349.

DOI: 10.1016/j.apsusc.2006.07.027

Google Scholar

[32] C. D. Wagner, W. M. Riggs, L. E. Moulder, G. E Muilenberg: Handbook of X-ray Photoelectron spectroscopy; Perkin-Elemer Corporation Physical Electronics Division: U.S.A., (1979).

Google Scholar

[33] M.J. Illan-Gomez, A. Linares-Solano, C. Salinas-Martinez de Lecea, Energ. Fuel. 9 (l995), p.976.

Google Scholar

[34] M.J. Illan-Gomez, A. Linares-Solano, L.R. Radovic, C. Salinas-Martınez de Lecea: Energ. Fuel. 10 (1996), p.158.

Google Scholar

[35] M.J. Illan-Gomez, C. Salinas-Martınez de Lecea, A. Linares-Solano, L. R. Radovic: Energ. Fuel. 12 (1998), p.1256.

Google Scholar

[36] J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Órfão: Carbon 37 (1999), p.1379.

Google Scholar