Numerical Simulation of Accumulative Forming Bipolar Plates of Fuel Cell

Abstract:

Article Preview

The bipolar plate is the key part in the fuel cell. It is difficult to produce the micro flow channel of bipolar plates with high accuracy. In order to solve this problem, we present one new forming techniques, accumulative forming, for the fabrication of micro flow channels. With the utilization of the software ABAQUS, finite element model of the bipolar plate with the 20mm×20mm×0.2mm is developed to simulate the accumulative forming and obtain the forming rules. The simulation results are about the plate’s thickness change and deformation. It shows that the thickness reduction decreases gradually from the center of the channel to the outside with the maximal magnitude in the starting point of accumulative forming. The maximum thinning ratio is 15.85%, which is in the forming limit scope. The simulation demonstrates the feasibility of the accumulative forming and good formability.

Info:

Periodical:

Edited by:

Dunwen Zuo, Hun Guo, Hongli Xu, Chun Su, Chunjie Liu and Weidong Jin

Pages:

10-13

DOI:

10.4028/www.scientific.net/AMR.136.10

Citation:

Z. Y. Xu et al., "Numerical Simulation of Accumulative Forming Bipolar Plates of Fuel Cell", Advanced Materials Research, Vol. 136, pp. 10-13, 2010

Online since:

October 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.