Effect of Sn on Glass Formation Ability and Crystallization Behaviors of Cu-Based Bulk Metallic Glass Alloy

Article Preview

Abstract:

Cu-based bulk metallic glasses (BMGs) with 5 mm in diameter were synthesized by copper mold casting. The effects of tin (Sn) addition on glass-forming ability (GFA), thermal stability of BMGs were investigated. It was found the addition of 4 at. % Sn is effective for an increase in GFA. The crystallization behaviors of Cu-based bulk metallic glasses during continuous heating are investigated mainly by differential scanning calorimeter(DSC).The results show that the characteristic temperatures(Tg,Tx and Tp) shifted to high temperature region with increasing of heating rates. The activation energies Eg, Ex and Ep, corresponding to characteristic temperatures Tg, Tx, and Tp, respectively, were obtained from Kissinger and Ozawa equations. The calculated activation energies agree well with Kissinger or Ozawa equations due to the almost invariability of the crystallization volume fraction at the characteristic temperatures for different heating rates.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 139-141)

Pages:

102-106

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Inoue: Acta Mater, Vol. 48 (2000), pp.279-306.

Google Scholar

[2] W.L. Johnson: MRS Bull, Vol. 10 (1999) No. 10, pp.42-56.

Google Scholar

[3] C.L. Qin: Acta Materialia, Vol. 55 (2007), p.2057-(2063).

Google Scholar

[4] D.H. Xu, B. Lohwongwatana, G. Duan, W.L. Johnson and C. Garland: Acta Materialia, Vol. 52 (2004) , pp.2621-2624.

Google Scholar

[5] D. Wang, Y. Li, B.B. Sun, M.L. Sui, K. Lu, E. Ma: Appl. Phys. Lett, Vol. 84 (2004) No. 20, pp.4029-4031.

Google Scholar

[6] A. Inoue, W. Zhang: Materials Transactions, Vol. 45 (2004) No. 2, pp.584-587.

Google Scholar

[7] E.S. Park, H.J. Chang, D.H. Kim, T. Ohkubo and K. Hono: Scripta Materialia, Vol. 54 (2006) No. 9, pp.1569-1573.

Google Scholar

[8] G.J. Fan , L.F. Fu , D.C. Qiao , H. Choo, P.K. Liaw N.D. Browning and J.F. Löffler: Journal of Non-Crystalline Solids, Vol. 353 (2007) No. 44-46, pp.4218-4222.

DOI: 10.1016/j.jnoncrysol.2007.08.057

Google Scholar

[9] V. Dmitri, Louzguine and A. Inoue: Journal of Non-Crystalline Solids, Vol. 325 (2003) No. 1-3, pp.187-192.

Google Scholar

[10] Y.Z. Yang, Z.J. Dong, Z.H. Qiu, X.Z. Chen, Z. w. Xie and X.J. Bai: The Chinese Journal of Nonferrous Metals, Vol. 17 (2007) No. 7, pp.1090-1095. (In Chinese).

Google Scholar

[11] G. He, Z. Bian and G.L. Chen: Acta Metall Sin, Vol. 35(1999) No. 5, pp.458-462. (In Chinese).

Google Scholar

[12] Q.S. Zhang, Y.F. Deng, L.L. He and H.F. Zhang: Acta Metall Sin, Vol. 39 (2003) No. 3, pp.301-304. (In Chinese).

Google Scholar

[13] M. Gogebakan, P.J. Warren and B. Cantor: Materials Science and Engineering A, Vol. 226-228 (1997), pp.168-172.

Google Scholar

[14] W. Hoyer, I. Kaban, P. Jóvári and E. Dost : Journal of Non-Crystalline Solids, Vol. 338-340 (2004), pp.565-568.

DOI: 10.1016/j.jnoncrysol.2004.03.043

Google Scholar

[15] Y. L . Gao, J. Shen and J.F. Sun: Materials Letters, Vol. 57 (2003) No. 16-17, pp.2341-2347.

Google Scholar

[16] L. Liu, Z.F. Wu and J. Zhang: Journal of Alloys and Compounds, Vol. 339 (2002) No. 1-2, pp.90-95.

Google Scholar

[17] Y.Z. Li. Thermodynamics Analysis (Tsinghua University Press, Beijing 1987).

Google Scholar

[18] S.W. He, Y. Liu, Z.T. Li and H. Wu: Materials Science and Engineering of Powder Metallurgy Vol. 13 (2008) No. 1, pp.13-18. (In Chinese).

Google Scholar

[19] Q. Wang, J.B. Qiang, Y.M. Wang, J.H. Xia and C. Dong: Journal of Non-Crystalline Solids, Vol. 353 (2007) No. 32-40, pp.3425-3428. Corresponding Author mse_tengxy@ujn. edu. cn.

DOI: 10.1016/j.jnoncrysol.2007.05.093

Google Scholar