A Nonlinear Mathematical Model for Turning Parameter Optimization Based on Minimum Production Cost

Article Preview

Abstract:

Cutting parameters including cutting speed, feed rate, depth of cut and the number of passes have significant influence on both machining quality and machining economics. Cutting parameter optimization involves optimal selection of a combination of these parameters. It is an essential part of a computer-aided manufacturing system. In this paper, an optimization model based on minimum production cost for multi-pass turning operations is developed. Various realistic machining conditions and machining requirements are incorporated in the model as constraints. Optimal solutions are found by a nonlinear programming solution approach. A turning example is presented to test the model. Compared with the literature and the cutting regimes recommended in machining data handbook, our model and solution method are simple and generate much lower unit production costs.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 139-141)

Pages:

1317-1321

Citation:

Online since:

October 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Gopalakrishnan and F. Al-Khayyal: Int. J Prod. Res. Vol. 29 (1991) No. 9, p.1897-(1908).

Google Scholar

[2] A. Manna and S. Salodkar: J. Mate. Process. Technol. Vol. 203 (2008) No. 1-3, pp.147-153.

Google Scholar

[3] Y.C. Shin and Y.S. Joo: Int. J Prod. Res. Vol. 30 (1992) No. 12, pp.2907-2919.

Google Scholar

[4] R. Gupta, J.L. Batra and G.K. Lal: Int. J Prod. Res. Vol. 33 (1995) No. 9, pp.2555-2565.

Google Scholar

[5] A.M.A. Al-Ahmari: Int. J Prod. Res. Vol. 39 (2001) No. 15, pp.3367-3376.

Google Scholar

[6] A.M. Zain, H. Haron and S. Sharif: Expert Syst. Appl. Vol. 37 (2010) No. 6, pp.4650-4659.

Google Scholar

[7] R.Q. Sardinas, M.R. Santana and E.A. Brindis: Eng. Appl. Artif. Intel. Vol. 19 (2006) No. 2, pp.127-133.

Google Scholar

[8] H. Juan, S.F. Yu and B.Y. Lee: Int. J Mach. Tool. Manu. Vol. 43 (2003) No. 7, pp.679-686.

Google Scholar

[9] R.V. Rao and P.J. Pawar: Appl. Soft Comp. Vol. 10 (2010) No. 2, pp.445-456.

Google Scholar

[10] L. Tang, R.G. Landers, and S.N. Balakrishnan: J Manuf. Sci. E - T ASME. Vol. 130 (2008) No. 3, pp.031002-12.

Google Scholar

[11] G. Boothroyd: Fundamentals of Metal Machining and Machine Tools (McGraw-Hill, New Delhi 1985).

Google Scholar

[12] Machinability Data Center: Machining Data Handbook (3rd edition, Metcut Research Associates Inc., Cincinnati, Ohio 1980). dt [mm] 6. 0 7. 0 8. 0 9. 0 10. 0 12. 0 ds [mm] 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 dr1 [mm] 4. 0 2. 9211 3. 5824 3. 5824 4. 0000 3. 5824 dr2 [mm] 2. 0789 2. 4176 3. 4176 4. 0000 3. 5824 dr3 [mm] 2. 8351 fs [mm/rev] 0. 3057 0. 3057 0. 3057 0. 3057 0. 3057 0. 3057 fr1 [mm/rev] 0. 3928 0. 5850 0. 4517 0. 4517 0. 3928 0. 4517 fr2 [mm/rev] 0. 9 0. 7434 0. 4795 0. 3928 0. 4517 fr3 [mm/rev] 0. 6075 Vs [m/min] 162. 71 162. 71 162. 71 162. 71 162. 71 162. 71 Vr1 [m/min] 130. 04 122. 49 130. 04 130. 04 130. 04 130. 04 Vr2 [m/min] 110. 86 115. 88 128. 26 130. 04 130. 04 Vr3 [m/min] 121. 42 n 1 2 2 2 2 3 UC [$/piece] 2. 0768 2. 4650 2. 6045 2. 7440 2. 9198 3. 4294.

DOI: 10.17973/mmsj.2009_12_20091203

Google Scholar