[1]
H. Bustince, Mathematical analysis of interval-valued fuzzy relations: application to approximate reasoning, Fuzzy Sets and Systems 113(2000), 205-219.
DOI: 10.1016/s0165-0114(98)00020-7
Google Scholar
[2]
J. F. Baldwin, Feasible algorithms for approximate reasoning using fuzzy logic, Fuzzy Sets and Systems 3(1980), 225-251.
DOI: 10.1016/0165-0114(80)90022-6
Google Scholar
[3]
J. F. Baldwin, Fuzzy logic and fuzzy reasoning, Int.J. Man-Mach. Studies 11(1979), 465-480.
DOI: 10.1016/s0020-7373(79)80038-3
Google Scholar
[4]
S. M. Chen, Bidirectional approximate reasoning based on interval-valued fuzzy sets, Fuzzy Sets and Systems 91(1997), 339-353.
DOI: 10.1016/s0165-0114(97)86594-3
Google Scholar
[5]
S. M. Chen, An improved algorithm for inexact reasoning based on extended fuzzy production rules, Cybernet. Systems 23(1992), 463-481.
DOI: 10.1080/01969729208927477
Google Scholar
[6]
Andrzej Dziech, Decision making in signal transmission problems with interval-valued fuzzy sets, Fuzzy Sets and Systems, 23(1987), 191-203.
DOI: 10.1016/0165-0114(87)90058-3
Google Scholar
[7]
M. B. Gorzalczany, A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy Sets and Systems 21 (1987), 1-17.
DOI: 10.1016/0165-0114(87)90148-5
Google Scholar
[8]
I. B. Turksen, An approximate analogical reasoning schema based on similarity measures and interval-valued fuzzy sets, Fuzzy Sets and Systems, 34(1990), 323-346.
DOI: 10.1016/0165-0114(90)90218-u
Google Scholar
[9]
B. Yuan, et al., On normal form based on interval-valued fuzzy sets and their applications to approximate reasoning, Internat. J. General Systems 23 (1995), 241-254.
DOI: 10.1080/03081079508908041
Google Scholar
[10]
D. S. Yeung, A multilevel weighted fuzzy reasoning algorithm for expert systems, IEEE Trans. on Systems, Man and Cybernetics, part A. 28 (2002), 149-158.
DOI: 10.1109/3468.661144
Google Scholar