Microstructure Evolution of Near Gamma TiAl Intermetallic under Tensile Impact Loadings at High Temperatures

Article Preview

Abstract:

The effect of temperature and strain rate on the mechanical behavior and microstructure evolution of Near Gamma Ti-46.5Al-2Nb-2Cr (NG TiAl) was investigated at temperatures ranging from room temperatures to 840 under strain rates of 0.001, 320, 800 and 1350s-1. The TEM analysis indicated that deformation twinning and stacking fault are the main deformation modes under dynamic loadings and dislocation slip is another important deformation mode under quasi-static loadings. The density of deformation twinning and/or stacking fault increases with the increased temperature and strain rate.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 146-147)

Pages:

1553-1556

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Song and G. T. Gray III: Metall. Mater. Trans. A Vol. 26 (1995), p.2665.

Google Scholar

[2] Y. -W. Kim: JOM Vol. 46 (1994), p.30.

Google Scholar

[3] W. T. Marketz, F. D. Fischer and H. Clemens: Int. J. Plast. Vol. 19 (2003), p.281.

Google Scholar

[4] D. Shechtman, M. Blackburn and H. Lipsitt: Metall. Trans. Vol. 5 (1974), p.1373.

Google Scholar

[5] F. Appel and R. Wagner: Mat. Sci. Eng. R Vol. 22 (1998), p.187.

Google Scholar

[6] J. Kumpfert, Y. W. Kim and D. M. Dimiduk: Mat. Sci. Eng. A Vol. 192-193 (1995), p.465.

Google Scholar

[7] C. T. Liu: Materials Chemistry and Physics Vol. 42 (1995), p.77.

Google Scholar

[8] M. Yamaguchi, H. Inui, S. Yokoshima, K. Kishida and D. R. Johnson: Materials Science and Engineering: A Vol. 213 (1996), p.25.

Google Scholar

[9] F. Appel, U. Brossmann, U. Christoph, S. Eggert, P. Janschek, U. Lorenz, J. Müllauer, M. Oehring and J. D. H. Paul: Adv. Eng. Mater. Vol. 2 (2000), p.699.

DOI: 10.1002/1527-2648(200011)2:11<699::aid-adem699>3.0.co;2-j

Google Scholar

[10] H. Clemens and H. Kestler: Adv. Eng. Mater. Vol. 2 (2000), p.551.

Google Scholar

[11] Y. -W. Kim and D. M. Dimiduk: JOM Vol. 43 (1991), p.41.

Google Scholar

[12] Z. Jin, C. Cady, G. T. Gray III and Y. -W. Kim: Metall. Mater. Trans. A Vol. 31 (2000), p.1007.

Google Scholar

[13] S. A. Maloy and G. T. Gray III: Acta Mater. Vol. 44 (1996), p.1741.

Google Scholar

[14] Z. M. Sun, T. Kobayashi, H. Fukumasu, I. Yamamoto and K. Shibue: Metall. Mater. Trans. A Vol. 29 (1998), p.263.

Google Scholar

[15] Y. M. Xia and Y. Wang: J. Test. Eval. Vol. 35 (2007), p.1.

Google Scholar

[16] X. Zan, X. Chen, W. Huang and Y. Xia: J. Exp. Mech. Vol. 20 (2005), p.321.

Google Scholar

[17] V. M. Imayev, R. M. Imayev, G. A. Salishchev, K. B. Povarova, M. R. Shagiev and A. V. Kuznetsov: Scr. Mater. Vol. 36 (1997), p.891.

Google Scholar

[18] R. Reed-Hill and R. Abbaschian: Physical Metallurgy Principles. (PWS-Kent, USA 1992).

Google Scholar

[19] M. A. Meyers, O. Vohringer and V. A. Lubarda: Acta Mater. Vol. 49 (2001), p.4025.

Google Scholar