Corrosion Behaviour of a Fe-Based Alloy in Zn and Zn-55Al Baths

Article Preview

Abstract:

Corrosion behavior in Zn and Zn-55Al baths were investigated on a Fe-based alloy, which was design to apply to hot-dip production lines as the anti-corrosion alloy. The results reveal that the Fe-based alloy shows excellent corrosion resistance both in pure zinc bath and Zn-55Al bath. And the reaction rate and intermetallic phase formation vary in different bath. In pure zinc bath, the intermetallic phases form on the Fe-base alloy is chiefly Fe-Zn phases contains Γ, δ and ζ phases. In Zn-55Al bath, the Fe-based alloy is comprised of Fe2Al5 and FeAl3 phases, and the outer layer is from bath itself. The more thickness the layer of Fe2Al5 phase, the more corrosion resistance of the alloy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 146-147)

Pages:

1741-1749

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Varadarajan, B. Kang and M. Bright. Galvatech'07 Conf., Japan, 2007, p.18.

Google Scholar

[2] H. Zoz, H. U. Benz, K. Hüttebräucker, et al. KPMI Spring Meeting, Korea, 2000, p.650.

Google Scholar

[3] A. R. Moreira, Z. Panossian, P. L. Camargo. Corrosion Science, 48(2006), p.564.

Google Scholar

[4] M. L. Burris. West Virginia, 2000, p.27.

Google Scholar

[5] X. B. Liu, E. barbero, J. Xu, et al. Metall. Mater. Trans. A, 36(2005), No. 8, p.2049.

Google Scholar

[6] M. Onishi, Y. Wakamatsu and H. Miura. J Ins Metals, 37(1973), No. 12, p.1279.

Google Scholar

[7] C Allen, J Mackowiak. J Inst Met, 63(1962), No. 91, p.369.

Google Scholar

[8] X. J, A. B Mark, X. B Liu, et al. Metall. Mater. Trans. A, 38A(2007), P2727.

Google Scholar

[9] X. Liu, E. Barbero, C. Irwin. AIS Tech 2005-Proceedings of the Iron & Steel Technology Conf., U.S. A, 2005, P403.

Google Scholar

[10] G. Reumont, J. B. Vogta, A. Iost, et al. Surf. and Coat. Tech, 139(2001), P265.

Google Scholar

[11] Peng Bicao, Wang J H, Su X P, et al. Surf. and Coat. Tech, 7(2007), P1.

Google Scholar

[12] Marder A R. Mater Sci., 45 (2000), p.191.

Google Scholar

[13] Mackowiak J , Short N R. Int. Met. Reviews, 1(1979), p.1.

Google Scholar

[14] J T Lu, Xu Q Y, Kong G. Application and Technology of Hot Dipping, China Machine Press, Beijing, 2006, p.43.

Google Scholar

[15] F. Barbier, J. Blanc. J. Mater. Res, 14(1999), p.737.

Google Scholar

[16] S. H. Wang, J. H. Song, Y. S. Kim. Metall. Mater. Trans. A, 2005(390), P437.

Google Scholar

[17] A. Turnbull, M. W. Carroll, and D. H. Ferriss. Corr. Sci., 30(1990), p.667.

Google Scholar

[18] T. M, S. P. Gupta. Mater. Charact., 49(2003), p.293.

Google Scholar

[19] Morando, Jorge A. US Patent, Appl. 958614, (1995).

Google Scholar