Relation between Medium-Range Order and Crystallization in Al-Ni Based Glass-Former Alloys

Article Preview

Abstract:

The structure evolutions of Al83Ni10Ce5Si2, Al83Ni10Ce7, Al85Ni10Ce5, Al87Ni7Nd6 and Al87Ni5Co2Nd6 metallic glasses have been studied in detail. The studies establish a relation between the amount of medium range order (MRO) and crystallization mode. An increased amount of MRO suppresses the precipitation of primary fcc-Al and transforms the crystallization mode from a primary crystallization (Al87Ni7Nd6) to a eutectic crystallization (Al87Ni5Co2Nd6); while a decreasing amount of MRO promotes the precipitation of primary fcc-Al and transforms the crystallization mode from a eutectic crystallization (Al83Ni10Ce7 and Al85Ni10Ce5) to a primary crystallization (Al83Ni10Ce5Si2).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 146-147)

Pages:

202-207

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. I. Wu, G. Wilde, and J. H. Perepezko, Mater. Sci. Eng. A Vol. 12 (2001), p.301.

Google Scholar

[2] D. R. Allen, J. C. Foley, and J. H. Perepezko, Acta mater Vol. 46 (1998), p.431.

Google Scholar

[3] J. C. Foley, D. R. Allen, and J. H. Perepezko, Mater. Sci. Eng. A Vol 226–228 (1997), P. 569.

Google Scholar

[4] H. Chen, Y. He, G. J. Shiflet, and S. J. Poon, Scripta metall. Mater Vol. 25 (1991), p.1421.

Google Scholar

[5] Y. H. Kim, A. Inoue, and T. Masumoto, Mater. Trans. JIM Vol. 32 (1991), p.331.

Google Scholar

[6] A. Inoue, and H. Kimura, Mater. Sci. Forum Vol. 235–238 (1997), p.873.

Google Scholar

[7] A. Inoue, Prog. Mater. Sci Vol. 43 (1998), p.365.

Google Scholar

[8] F. Q. Guo, S. J. Poon, and G. J. Shiflet, Scripta mater Vol. 43 (2000), p.1089.

Google Scholar

[9] A. Inoue, and J. S. Gook, Mater Trans Vol. 37 (1996), p.181.

Google Scholar

[10] A. P. Tsai, T. Kamiyama, Y. Kawamura, A. Inoue, and T. Masumoto, Acta mater Vol. 45 (1997), p.1477.

Google Scholar

[11] M. Calin, and U. Koster, Mater. Sci. Forum Vol. 749 (1998), p.269.

Google Scholar

[12] J. C. Foley, D. R. Allen, and J. H. Perepezko, Scripta mater Vol. 35 (1996), p.655.

Google Scholar

[13] K. F. Kelton, Phil. Mag. Lett Vol. 77 (1998), p.377.

Google Scholar

[14] K. F. Kelton, Acta mater Vol. 48 (2000), p. (1967).

Google Scholar

[15] A. K. Gangopadhay, T. K. Croat, Acta mater Vol. 48 (2000), p.4035.

Google Scholar

[16] P. H. Gaskell, J. Non-Cryst. Solids Vol. 1003 (2005), p.351.

Google Scholar

[17] X.F. Bian, B.A. Sun, and L.N. Hu. Chin. Phys. Lett Vol. 23( 2006), p.1864.

Google Scholar

[18] S. R. Elliott, Physics of Amorphous Materials 2nd edn, Longman, London, 1990, p.139–151.

Google Scholar

[19] C. Fan, D. V. Louzguine, L. Chunfei, and A. Inoue, Appl. Phys. Lett Vol. 340 (1999), p.75.

Google Scholar

[20] J. J. Saida, M. Matsushita, and A. Inoue, Appl. Phys. Lett Vol. 412 (2001), p.79.

Google Scholar

[21] J. Y. Qin, X. F. Bian, S. I. Sliusarenko, and W. M. Wang, J. Phys.: Condens Matter Vol. 10 (1998), p.1211.

Google Scholar

[22] L. Zhang, Y. S. Wu, X. F. Bian, H. Li, W. M. Wang, J. G. Li, and N. Lun, J. Phys.: Condens Matter Vol. 11 (1999), p.7959.

Google Scholar

[23] H. Li, J. Phys. Chem. B Vol. 108 (2004), p.5438.

Google Scholar

[24] E. Matubara, K. Harada, Y. Waseda, H. S. Chen, and A. Inoue, J. Mater. Sci Vol. 23 (1988), p.753.

Google Scholar

[25] W. Hoyer, and R. Jodicke, J. Non-Cryst. Solids Vol. 192–193 (1995), p.102.

Google Scholar

[26] H. Tanaka, J. Phys: Condens. Matter Vol. 15 (2003), p.491–L498.

Google Scholar

[27] S. K. Das, J. Horbach, M. M. Koza, C. S. Mavila, and A. Meyer, Appl. Phys. Lett Vol. 86 (2005), p.011918.

DOI: 10.1063/1.1845590

Google Scholar

[28] Bo Z, Bian XF, Fu CX, J. Phys.: Condens Matter Vol 50, (2005), pp.7885-7893.

Google Scholar