The Effect of (Li,Ce) Doping in Aurivillius Phase Material Na0. 5Bi4.5Ti4O15

Article Preview

Abstract:

Na0.5Bi4.5Ti4O15-based materials with A-site vacancy were synthesized using conventional solid state processing. The (Li,Ce) modification of Na0.5Bi4.5Ti4O15-based materials resulted in the obvious improvement of the piezoelectric activity and dielectric permittivity. The dielectric and piezoelectric properties of Na0.5Bi4.5Ti4O15-based ceramics exhibiting a very stable temperature behavior, together with its high TC ~641oC, excellent piezoelectric coefficient ~28pC/N and very low temperature coefficient of resonant frequency, making the (Li,Ce) modified Na0.5Bi4.5Ti4O15-based ceramics a promising candidate for high temperature applications.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 146-147)

Pages:

89-92

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Lines M E, Glass A M: Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford 1979).

Google Scholar

[2] Takenaka T, Sakata K: J. Appl. Phys. Vol. 55(1984), p.1092.

Google Scholar

[3] Ando A, Kimura M, Sakabe Y: Jpn. J. Appl. Phys. Vol. 42(2003), p.520.

Google Scholar

[4] Ando A 2003 Ph. D Thesis, Tokyo Institute of Technology.

Google Scholar

[5] Hou R Z, Chen X M: J. Mater. Res. Vol. 20(2005), p.2354.

Google Scholar

[6] Hou R Z, Chen X M : Solid State Commun. Vol. 130(2004), p.469.

Google Scholar

[7] Noguchi Y, Miwa I, Miyayama M: Jpn. J. Appl. Phys. Vol. 39(2000), p.1259.

Google Scholar

[8] Yao Y, Song C, Wang Y: J. Appl. Phys. Vol. 95(2004), p.3126.

Google Scholar

[9] Zhang Z , Yan H, Wang Y : Materials Research Bulletin Vol. 38(2003), p.241.

Google Scholar

[10] Villegas M, Jardiel T, Farias G: J. European Ceram. Soc. Vol. 24(2004), p.1025.

Google Scholar

[11] Zhang L, Chu R, Yin Q: Mater. Sci. Eng. B Vol. 116(2005), p.99.

Google Scholar

[12] Hong S, Horn J, Messing G L: J. Mater. Sci. Lett. Vol. 19(2000), p.1661.

Google Scholar

[13] Yan H X, Li C E, Zhou J G: Jpn J Appl Phys. Vol. 39(2000), p.6339.

Google Scholar

[14] Zeng J T, Li Y X, Yin Q R : Appl. Phys. Lett. Vol. 87(2005), p.202901.

Google Scholar

[15] Moure A, Alemany C, Pardo L: IEEE Trans. Ultrason., Ferro. Freq. Contr. Vol. 52(2005), p.570.

Google Scholar

[16] Zhang X, Huang Z, Choy C:J. Euro. Ceram. Soc. Vol. 19(1999), p.985.

Google Scholar

[17] Noguchi Y, Miyayama M : J Appl Phys. Vol. 95(2004), p.4261.

Google Scholar

[18] Holly S Shulman, Martin Testorf, Dragan Damjanovic and Nava Setter: J. Am. Ceram. Soc. Vol. 79(1996), p.3124.

Google Scholar

[19] Pardo, Castro A, Millan P: Acta. Mater. Vol. 48(2000), p.2421.

Google Scholar

[20] Yan H X, Zhang H T, Ubic R: Advanced Materials Vol. 17(2005), p.1261.

Google Scholar

[21] Villegas M, Jardiel T, Farias G: J. Eur. Cera. Soc. Vol. 24(2004), p.1025.

Google Scholar

[22] Li G R, Zheng L Y, Yin Q R: J. Appl. Phys. Vol. 98(2005), p.064108.

Google Scholar

[23] Yan H X, Li C E, Zhou J G: Jpn J Appl Phys. Vol. 40(2001), p.6501.

Google Scholar

[24] Takenaka T, Sakata K: Jpn. J. Appl. Phys. Vol. 24(1985), p.117.

Google Scholar