Computer Simulation of an Synthetic Ultraviolet Absorbent in the Interface of DMB and DMF

Article Preview

Abstract:

This work studies the aggregation of an synthetic ultraviolet absorbent, named 2-hydroxy-4-perfluoroheptanoate-benzophenone (HPFHBP), in the interface between two solvents which can not completely dissolve each other. The aggregation is studied by computer simulations based on a dynamic density functional method and mean-field interactions, which are implemented in the MesoDyn module and Blend module of Material Studios. The simulation results show that the synthetic ultraviolet absorbent diffuse to the interface phase and the concentration in the interface phase is greater than it in the solvents phase.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 146-147)

Pages:

966-971

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Robert R. Matheson Jr. 20th- to 21st-Century Technological Challenges in Soft Coatings. Science,297(5583), 976 – 979(2002).

DOI: 10.1126/science.1075707

Google Scholar

[2] C. Decker, F. Masson,R. Schwalm. Weathering resistance of waterbased uv-cured polyurethane-acrylate coatings, Polymer Degradation and Stability 83 (2004)309-320.

DOI: 10.1016/s0141-3910(03)00276-3

Google Scholar

[3] Z.W. Wicks F.N. Jones S.P. Pappas, Organic Coatings Science and Technology. The publication of chemical industry,Beijing, (2002).

Google Scholar

[4] R.P. Singh, Namrata S. Tomer, Veera Bhadraiah. Photo-oxidation studies on polyurethane coating: effect of additives on yellowing of polyurethane, Polymer Degradation and Stability 73 (2001)443-446.

DOI: 10.1016/s0141-3910(01)00127-6

Google Scholar

[5] Pilar Garcia Parejo, Marcos Zayat, David Levy. Highly efficient UV-absorbing thin-film coatings for protection of organic materials against photodegradation, J. Mater. Chem. 16 (2006) 2165–2169.

DOI: 10.1039/b601577h

Google Scholar

[6] C.A. Peters, K.R. Ellwood, Y. Srivastava, et al. Ultraviolet light absorber mobility in crosslinked coatings: Experiments and modeling, Progress in Organic Coatings 58 (2007) 272–281.

DOI: 10.1016/j.porgcoat.2006.12.004

Google Scholar

[7] B. Xiang, H.Y. He, R.Q. Zhu, S.T. Zhang.an ultraviolet absorbent and the synthetic method[P].CN:200910104531. 4.

Google Scholar

[8] Fraaije, J. G. E. M. J. Chem. Phys., 1993, 99: 9202.

Google Scholar

[9] Shelley, J. C.; Shelley, M. Y. Curr. Opin. Colloid Interface Sci. 2000, 5, 101.

Google Scholar

[10] Fraaije, J. G. E. M.; van Vlimmeren, B. A. C.; Maurits, N. M.; Postma, M.; Evers, O. A.; Hoffman, C.; Altevogt, P.; Gold-beck-Wood, G. J. Chem. Phys., 1997, 106: 4260.

Google Scholar

[11] van Vlimmeren, B. A. C.; Maurits, N. M.; Zvelindovsky, A. V.; Sevink, G. J. A.; Fraaije, J. G. E. M. Macromolecules, 1999, 32: 646.

Google Scholar

[12] Lam, Y. M.; Goldbeck-Wood, G. Polymer, 2003, 44: 3593.

Google Scholar

[13] Lam, Y. M.; Goldback-Wood, G.; Bothroyd, C. Molecular Simulation, 2004, 30: 239.

Google Scholar

[14] Guo, S. L.; Hou, T. J.; Xu, X. J. J. Phys. Chem. B, 2002, 106: 11397.

Google Scholar

[15] Li, Y.; Hou, T.; Guo, S.; Wang, K.; Xu, X. Phys. Chem. Chem. Phys., 2000, 2: 2749.

Google Scholar