Synthesis of CuO Nanocrystals in a Water-Isopropanol System

Article Preview

Abstract:

A facile method capable of preparing CuO nanocrystals has been developed in a water-isopropanol system. The different shapes of CuO nanocrystals can be obtained simply by adjusting the amount of adding water in the reaction system. Rod-like CuO nanocrystals with diameters of 5 nm and lengths of 20 nm, and spherical CuO nanoparticles with sizes of 5-8 nm can be formed. Furthermore, the obtained CuO product has a high surface area of 128 m2/g, which is very important for its applications especially in catalysts.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 148-149)

Pages:

1011-1015

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.P. Alivisatos: Science Vol. 271 (1996), p.933.

Google Scholar

[2] T. Hyeon: Chem. Commun. Vol. 8 (2003), p.927.

Google Scholar

[3] X. Ren, D. Chen and F. Tang: J. Phys. Chem. B Vol. 109 (2005), p.15803.

Google Scholar

[4] J. Gao, Y. Qi, W. Yang, X. Guo, S. Li and X. Li: Mater. Chem. Phys. Vol. 82 (2003), p.602.

Google Scholar

[5] N.Y. Xia, J.Y. Xiong, B. Lim and S.E. Skrabalak: Angew. Chem. Int. Ed. Vol. 48 (2009), p.60.

Google Scholar

[6] L. Manna, E.C. Scher and A.P. Alivisatos: J. Am. Chem. Soc. Vol. 122 (2000), p.12700.

Google Scholar

[7] X.G. Peng, L. Manna, W.D. Yang, J. Wickham, E.C. Scher, A. Kadavanich and A.P. Alivisatos: Nature Vol. 404 (2000), p.59.

DOI: 10.1038/35003535

Google Scholar

[8] Q. Song and Z.J. Zhang: J. Am. Chem. Soc. Vol. 126 (2004), p.6164.

Google Scholar

[9] D. Yu and V.W. Yam: J. Am. Chem. Soc. Vol. 126 (2004), p.13200.

Google Scholar

[10] Y. Khalavka, J. Becker and C. Sonnichsen: J. Am. Chem. Soc. Vol. 131 (2009), p.1871.

Google Scholar

[11] Y.P. Sukhorukov, N.N. Loshkareva, A.A. Samokhvalov, S.V. Naumov, A.S. Moskvin and A.S. Ovchinnikov: J. Magn. Magn. Mater. Vol. 183 (1998), p.356.

Google Scholar

[12] P.C. Dai, H.A. Mook, G. Aeppli, S.M. Hayden and F. Dogan: Nature, Vol. 406 (2000), p.965.

Google Scholar

[13] M. Frietsch, F. Zudock, J. Goschnick and M. Bruns: Sensor. Actuat. B Vol. 65 (2000), p.379.

Google Scholar

[14] C.L. Carnes and K.J. Klabunde: J. Mol. Catal. A Vol. 194 (2003), p.227.

Google Scholar

[15] B. Liu and H.C. Zeng: J. Am. Chem. Soc. Vol. 126 (2004), p.8124.

Google Scholar

[16] G.H. Du and G.V. Tendeloo: Chem. Phys. Lett. Vol. 393 (2004), p.64.

Google Scholar

[17] Y. Chang, J.J. Teo and H.C. Zeng: Langmuir Vol. 21 (2005), p.1074.

Google Scholar

[18] R. Yang and L. Gao: Solid State Commun. Vol. 134 (2005), p.729.

Google Scholar

[19] J.W. Zhu, H.P. Bi, Y.P. Wang, X. Wang, X.J. Yang and L.D. Lu: Mater. Chem. Phys. Vol. 109 (2008), p.34.

Google Scholar

[20] Y.G. Sun and Y.N. Xia: J. Am. Chem. Soc. Vol. 126 (2004), p.3892.

Google Scholar

[21] J. Chen, T. Herricks, M. Geissler and Y.N. Xia: J. Am. Chem. Soc. Vol. 126 (2004), p.10854.

Google Scholar

[22] J.W. Zhu, Y.P. Wang, X. Wang, X.J. Yang and L.D. Lu: Powder Technol. Vol. 181 (2008), p.249.

Google Scholar

[23] J.W. Zhu, G.Y. Zeng, F.D. Nie , X.M. Xu, S. Chen, Q.F. Han and X. Wang: Nanoscale, Vol. 2 (2010), p.988.

Google Scholar

[24] Y G. Sun and Y.N. Xia: Adv. Mater. Vol. 14 (2002), p.833.

Google Scholar

[25] J.W. Zhu, D. Li, H.Q. Chen, X.J. Yang, L.D. Lu and X. Wang: Mater. Lett. Vol. 58 (2004), p.3324.

Google Scholar