Luminescence of Cu2+-Doped ZnSe Quantum Dots with Different Parameters

Article Preview

Abstract:

Cu2+-doped ZnSe quantum dots (ZnSe:Cu2+ QDs) are synthesized in aqueous solution via a co-precipitation method with thioglycolic acid (TGA) as a stabilizer. Green emission is observed under 365 nm UV excitation. X-ray diffraction patterns and transmission electron microscopy image show that ZnSe:Cu2+ QDs are sphalerite cubic structure, similar to round in shape, the average diameter is 6 nm. The concentration of Cu2+ ions and TGA, pH, reaction time and aging time have influences on optical properties of ZnSe:Cu2+ QDs. The luminescence of as-prepared products with different parameters is characterized using fluorescence spectrophotometer. The high fluorescence intensity has been got when the concentration of Cu2+ ions is 4.0% (molar ratio), TGA is 83.4 μl (mol ratio Zn: TGA=1:2), pH is 9.5, reaction time is 2h. The luminous intensity increases with the extension of aging time.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 148-149)

Pages:

1268-1272

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.N.G. Giepmans, S.R. Adams, M.H. Ellisman and R.Y. Tsein: Sci. Vol. 5771 (2006), p.217.

Google Scholar

[2] J.K. Jyoti and S.M. Sanford: Trends. Cell Biol. Vol. 9 (2004), p.497.

Google Scholar

[3] B. Xing, W.W. Li and K. Sun: Mater. Lett. Vol. 62 (2008), p.3178.

Google Scholar

[4] J. Mao, J.N. Yao, L.N. Wang and W.S. Liu: J. Colloid Interface Sci. Vol. 319 (2008), p.353.

Google Scholar

[5] B.I. Lemon, M. C Richard: J. Am. Chem. Soc. Vol. 51 (2000), p.12886.

Google Scholar

[6] Y.D. Li, H.W. Liao, Y. Ding, Y. Fan, Y. Zhang and Y.T. Qian: Inorg. Chem. Vol. 38 (1999), p.1382.

Google Scholar

[7] A.M. Kapitonov, A.P. Stupak, S.V. Gaponenko, E.P. Petrov, A.L. Rogach and A. EychmÜller: J. Phys. Chem. B Vol. 103 (1999), p.10109.

DOI: 10.1021/jp9921809

Google Scholar

[8] A.M. Derfus, W.C.W. Chan and S. N. Bhatia: Nano. Lett. Vol. 4 (2004), p.11.

Google Scholar

[9] R.N. Bhargava and D. Gallagher: Phys. Rev. Lett. Vol. 72 (1994), p.416.

Google Scholar

[10] M. Behboudnia and P. Sen: Phys. Rev. B Vol. 63 (2001), p.035316.

Google Scholar

[11] J.M. Huang, Y. Yang, S.H. Xue, B. Yang, S.Y. Liu and J.C. Shen: Appl. Phys. Lett. Vol. 70 (1997), p.2335.

Google Scholar

[12] S.C. Qu, W.H. Zhou, F.Q. Liu, N. F Chen, Z. G Wang, H.Y. Pan and D.P. Yu: Appl. Phys. Lett. Vol. 80 (2002), p.3605.

Google Scholar

[13] A. A Bol, R.V. Beek and A. Meijerink: Chem. Mater. Vol. 14 (2002), p.1121.

Google Scholar

[14] D.J. Norris, N. Yao, F. T Charnock, T.A. Kennedy: Nano. Lett. Vol. 1 (2001), p.3.

Google Scholar

[15] J.F. Suyver, S.F. Wuister, J. J Kelly and A. Meijerink: Phys. Chem. Chem. Phys. Vol. 2 (2000), p.5445.

DOI: 10.1039/b006950g

Google Scholar

[16] S. S Li, F.T. Liu, Q. Wang, X.X. Chen and P. Yang: Adv. Mater. Research Vol. 79-82 (2009), p. (2043).

Google Scholar

[17] N. Gaponik, D.V. Talapin, A.L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmu1ller and H. Weller: J. Phys. Chem. B Vol. 106 (2002), p.7177.

DOI: 10.1021/jp025541k

Google Scholar

[18] V. Swayambunathan, D. Hayes, K.H. Schmidt, Y.X. Liao and D. Meisel: J. Am. Chem. Soc. Vol. 112 (1990), p.3831.

Google Scholar

[19] M.Y. Gao, S. Kirstein and H. Möhwald:J. Phys. Chem. B Vol, 102(1998), p.8360.

Google Scholar

[20] J. Guo, W.L. Yang, C.C. Wang: J. Phys. Chem. B Vol. 109 (2005), p.17467.

Google Scholar

[21] P. R. Kratzert, M. Rabe and F. Henneberger: Appl. Surf. Sci. Vol. 166 (2000), p.332.

Google Scholar