Self-Assembly of a Novel Cationic Porphyrin-Anthraquione Hybrid Investigated by Scanning Tunneling Microscopy

Article Preview

Abstract:

The self-assembly behaviour of a novel cationic porphyrin-anthraquione (Por-AQ) hybrid ([AQATMPyP]I3) on highly oriented pyrolytic graphite (HOPG) was studied at room temperature in air by scanning tunneling microscopy(STM). According to theoretical calculation, it is testified that [AQATMPyP]I3 molecule mainly exists in the closed structure. The STM results reveal the presence of large-scale domains of ordered adlayer of this hybrid compound on HOPG. The STM images show a structure constituted by parallel rows. The width of each row is approximately 2.5nm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 148-149)

Pages:

1273-1276

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Elemans J. A. A. W.; Hameren R. Van; Nolte R. J. M.; Rowan A. E. Adv. Mater., 2006, 18: 1251.

Google Scholar

[2] Debreczeny M. P.; Svec W. A.; Wasielewski M. R. Science, 1996, 274: 584.

Google Scholar

[3] Otsuki J.; Kawaguchi S.; Yamakawa T.; Asakawa M.; Miyake K. Langmuir, 2006, 22: 5708.

Google Scholar

[4] Ogunrinde A.; Hipps K.W.; Scudiero L. Langmuir, 2006, 22: 5697.

Google Scholar

[5] Qiu X., Wang C.; Zeng Q.; Xu B.; Yin S.X.; Wang H.; Xu S.; Bai C. J. Am. Chem. Soc., 2000, 122: 5550.

Google Scholar

[6] Zhou Y.; Wang B.; Zhu M.; Hou J. G. Chem. Phys. Lett., 2005, 403: 140.

Google Scholar

[7] Auwarter W.; Weber-Bargioni A.; Riemann A.; Schiffrin A.; Groning O.; Fasel R.; Barth J. V. J. Chem. Phys., 2006, 124: 194708.

Google Scholar

[8] Ikeda T.; Asakawa M.; Goto M.; Miyake K.; Ishida T.; Shimizu T. Langmuir, 2004, 20: 5454.

Google Scholar

[9] Deng W. L.; Fujita D.; Ohgi T.; Yokoyama S.; Kamikado K.; Mashiko S. J. Chem. Phys, 2002, 117: 4995.

Google Scholar

[10] Deng W. L.; Xiao Z. W.; Wang W.; Li A. D. Q. J. Phys. Chem. B, 2007, 111: 6544.

Google Scholar

[11] Zhao P.; Xu L. C.; Huang J. W.; Zheng K. C.; Liu J.; Yu H. C.; Ji L. N. Biophys. Chem., 2008, 134: 72.

Google Scholar

[12] Frisch M. J.; Trucks G. W.; Schlegel H. B.; et al.  Gaussian 03, Revision D. 01, Gaussian, Inc., Wallingford CT, (2005).

Google Scholar

[13] Ren Z. Q.; Huang J. W.; Lin C. W.; Ji L. N. Chem. J. Chin. Univ., 1997, 20: 333.

Google Scholar

[14] Schuster D. I.; MacMahon S.; Guldi D. M.; Echegoyen L.; Braslavsky S. E. Tetrahedron, 2006, 62: (1928).

Google Scholar

[15] Zhang Z. L.; Pang D. W.; Zhang R. Y.; Yan J. W.; Mao B. W.; Qi Y. Bioconjugate Chem., 2002, 13: 104.

Google Scholar

[16] Drain C. M.; Lehn J. M. J. Chem. Soc., Chem. Commun., 1994: 2313.

Google Scholar

[17] Stang P. J.; Fan J.; Olenyuk B. Chem. Commun., (Cambridge) 1997: 1453.

Google Scholar

[18] Yokoyama T.; Yokoyama S.; Kamikado T.; Kuno Y.; Mashiko S. Nature, 2001, 413: 619.

Google Scholar

[19] Boyd P. D. W.; Hodgson M. C.; Rickard C. E. F.; Oliver A. G.; Brothers P. J.; Chaker L.; Bolskar R. D.; Tham F. S.; Reed C. A. J. Am. Chem. Soc., 1999, 121: 10487.

DOI: 10.1021/ja992165h

Google Scholar