Modeling of Thermal Exposure Effect on the Microstructure Evolution and Properties of High Cu/Mg Ratio Al-Cu-Mg-Ag Alloys

Article Preview

Abstract:

This work aims to develop a physically based numerical model to predict the microstructure evolution and residual yield strength of high Cu/Mg ratio Al-Cu-Mg-Ag alloys after thermal exposure. Based on the established interfacial energy model and the classical nucleation and growth theories, a thermodynamically based precipitation model had been established to describe competitive precipitation of two phases, being of different stability, in under-aged and the subsequent thermally exposed Al-Cu-Mg-Ag alloys. And the strengthening model based on Orowan mechanism was deduced to predict the residual yield strength after thermal exposure. The microstructural evolution and yield strength predictions of the model in this work are generally in good agreement with the experimental result.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 148-149)

Pages:

136-140

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. N. Lumley, I. J. Polmear, Scripta Mater. 50(2004), p.1227.

Google Scholar

[2] I. J. Polmear, G. Pons, Y. Barbaux, et al, Mater. Sci. Technol. 15 (1999), p.861.

Google Scholar

[3] A. W. Zhu, M. G. Brian, J. S. Gary, et al, Scripta Mater. 52 (2004), p.3671.

Google Scholar

[4] R. N. Lumley, A. J. Morton, I J Polmear, Acta mater. 50 (2002), p.3597.

Google Scholar

[5] K. Hono, N. Sano, S. S. Babu, R. Okano, Acta Metall. Mater. 41 (1993), p.829.

Google Scholar

[6] M. Murayama, K. Hono, Scripta Mater. 38 (1998), p.1315.

Google Scholar

[7] R. Ferragut, A. Dupasquier, C. E. Macchi, Scripta Mater. 7357 (2008), p.1.

Google Scholar

[8] K. Hono, M. Murayama, L. Reich, Acta Mater. 46(1998), p.6053.

Google Scholar

[9] R. Kampmann, R. Wagner, Mater. Sci. Technol. 5 (1991) , p.213.

Google Scholar

[10] M. Volmer, A. Weber, Z. Phys. Chem. 119 (1926), p.277.

Google Scholar

[11] C. Zener, J. Appl. Phys. 20 (1949), p.950.

Google Scholar

[12] A. Deschamps,Y. Brechet, Acta Mater. 47 (1999), p.293.

Google Scholar

[13] H. B. Aaron, D. Fainstain, G. R. Kotler, J. Appl. Phys. 41 (1970), p.4404.

Google Scholar

[14] I. M. Lifshitz, V. V. Slyozov, Phys. Chem. Solids. 19 (1961), p.35.

Google Scholar

[15] A. W. Zhu, E. A. Starke, Acta Mater. 47 (1999), p.3263.

Google Scholar