Size Controllable Synthesis of Magnetite Fe3O4 Nanoparticles

Abstract:

Article Preview

The Magnetite (Fe3O4) nanoparticles have been successfully synthesized through a solvothermal route by using FeCl36H2O and NH4HCO3 as the starting materials. The as-prepared products are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), superconducting quantum interference device magnetometer (SQUID) and Brunauer-Emmett-Teller (BET). The uniform size of the Fe3O4 nanoparticles can be well controlled from 10 to 90 nm by changing the surfactants or the inorganic salts in the solvothermal process. The experiment results reveal that the magnetic properties of magnetite nanoparticles can be tuned by changing the particles size. In addition, the solvents in this reaction system have an important influence on the composition and morphology of the final products.

Info:

Periodical:

Advanced Materials Research (Volumes 148-149)

Edited by:

Xianghua Liu, Zhengyi Jiang and Jingtao Han

Pages:

1379-1382

DOI:

10.4028/www.scientific.net/AMR.148-149.1379

Citation:

H. Wang et al., "Size Controllable Synthesis of Magnetite Fe3O4 Nanoparticles", Advanced Materials Research, Vols. 148-149, pp. 1379-1382, 2011

Online since:

October 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.