Nitrogen-Incorporated NaY Zeolite as Promising Basic Microporous Catalytic Material

Article Preview

Abstract:

A promising basic microporous catalytic material is prepared by nitridation of dehydrated NaY zeolite. The base strength of zeolite framework is enhanced due to the replacement of oxygen by nitrogen with lower electronegativity. Various characterization methods, including XRD, CHN elemental analysis, SEM and FTIR spectra of CO adsorption, are employed to analyze the physico-chemical properties of the nitrogen-incorporated NaY zeolite. High crystallinity and high specific surface areas of NaY are well preserved in nitrogen-incorporated NaY. Compared to parent NaY zeolite, the nitridized materials exhibit improved basic catalytic performances in Knoevenagel condensation reaction and side-chain monomethylation reaction of phenylacetonitrile.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 148-149)

Pages:

957-962

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Xiong, Y. Ding, L. Lin, J. Phys. Chem. B 107 (2003) 1366-1369.

Google Scholar

[2] G.T. Kerr, G.R. Shipman, J. Phys. Chem. 72 (1968) 3071-3072.

Google Scholar

[3] S. Ernst, M. Hartmann, S. Sauerbeck, T. Brongers, Appl. Catal. A 200 (2000) 117-123.

Google Scholar

[4] K. D. Hammond, F. Dogan, G.A. Tompsett, V. Agarwal, W.C. Conner, Jr., C.P. Grey, S.M. Auerbach, J. Am. Chem. Soc. 130 (2008) 14912-14913.

DOI: 10.1021/ja8044844

Google Scholar

[5] F. Dogan, K.D. Hammond, G.A. Tompsett, H. Huo, W.C. Conner, S.M. Auerbach, C.P. Grey, J. Am. Chem. Soc. 131 (2009) 11062-11079.

DOI: 10.1021/ja9031133

Google Scholar

[6] C. Zhang, Z. Xu, K. Wan, Q. Liu, Appl. Catal. A 258 (2004) 55-61.

Google Scholar

[7] X. Guan, N. Li, G. Wu, J. Chen, F. Zhang, N. Guan, J. Mol. Catal. A 248 (2006) 220-225.

Google Scholar

[8] G. Wu, X. Wang, Y. Yang, L. Li, N. Guan, Micropor. Mesopor. Mater. 127 (2010) 25-31.

Google Scholar

[9] X. Guan, F. Zhang, G. Wu, N. Guan, Mater. Lett. 60 (2006) 3141-3144.

Google Scholar

[10] K. Narasimharao, M. Hartmann, S. Ernst, Micropor. Mesopor. Mater. 90 (2006) 377-383.

Google Scholar

[11] L. Regli, S. Bordiga, C. Busco, C. Prestipino, P. Ugliengo, A. Zecchina, C. Lamberti, J. Am. Chem. Soc. 129 (2007) 12131-12140.

DOI: 10.1021/ja0721770

Google Scholar

[12] K.D. Hammond, M. Gharibeh, G. A. Tompsett, F. Dogan, A. V. Brown, C.P. Grey, S.M. Auerbach, W.C. Conner, Chem. Mater. 22 (2010) 130–142.

DOI: 10.1021/cm902511a

Google Scholar

[13] J.P. Rieu, A. Boucherle, H. Cousse, G. Mouzin, Tetrahedron 42 (1986) 4095.

DOI: 10.1016/s0040-4020(01)87634-1

Google Scholar

[14] Y. Ono, T. Baba, Catal. Today 38 (1997) 321-337.

Google Scholar

[15] J.J. Benítez, A. Díaz, Y. Laurent, P. Grange, J.A. Odriozola, Z. Phys. Chem. 202 (1997) 21.

Google Scholar

[16] K.I. Hadjiivanov, G.N. Vayssilov, Adv. Catal. 47 (2002) 307-511.

Google Scholar

[17] K.I. Hadjiivanov, Catal. Rev. Sci. Eng. 42 (2000) 71-144.

Google Scholar

[18] E. Paukshtis, R. Soltanov, and E. Yurchenko, React. Kinet. Catal. Lett. 16 (1981) 93-96.

Google Scholar

[19] V. Bobs, B. Fubini, E. Garrone, and C. Morterra, Stud. Surf. Sci. Catal. 48 (1989) 159-166.

Google Scholar

[20] G. Busca, V. Lorenzelli, Mater. Chem. 7 (1982) 89-126.

Google Scholar

[21] N. Babaeva and A. Tsyganenko, J. Catal. 123 (1990) 396-416.

Google Scholar