Synthesis of Highly Mono-Dispersed Mesoporous Silica Spheres

Article Preview

Abstract:

Mono-dispersed mesoporous silica spheres with highly ordered hexagonal regularity were synthesized by hydrothermal method with tetraethoxysilane (TEOS) as silica source, cetyltrimethylammonium chloride (C16TAC) as template, methanol as co-solvent, and sodium hydroxide as alkali source. The influence of the C16TAC concentration, TEOS concentration, methanol/water ratio and the synthesis temperature on morphology and mesostructure of the prepared silica particles were investigated in detail. The results showed that the synthesized mono-dispersed spherical silica particles have ordered hexagonal mesoporous structure, high specific surface area and uniform pore size distribution.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 148-149)

Pages:

967-973

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.T. Kresge, M.E. Leonowicz, W.J.C. Vartuli, J.S. Beck: Nature Vol. 359 (1992), p.710.

Google Scholar

[2] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olsen, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker: J. Am. Chem. Soc. Vol. 114 (1992), p.10824.

DOI: 10.1021/ja00053a020

Google Scholar

[3] C. Boissière, A. Lee, A.E. Mansouri, A. Larbot, E. Prouzet: Adv. Funct. Mater. Vol. 11 (2001), p.129.

Google Scholar

[4] K.W. Gallis, J.T. Araujo, K.J. Duff, J.G. Moore, C.C. Landry: Adv. Mater. Vol. 11 (1999), p.1452.

Google Scholar

[5] A. Kurganov, K.K. Unger, T. Issaevra: J. Chromatogr. A Vol. 753 (1996), p.177.

Google Scholar

[6] T. Nassivera, A.G. Eklund, C.C. Landry: J. Chromatogr. A Vol. 973 (2002), p.97.

Google Scholar

[7] M. -H. Lee, S. -G. Oh, S. -K. Moon, S. -Y. Bae: J. Colloid Interface Sci. Vol. 83 (2001), p.240.

Google Scholar

[8] Y. Yamada, K. Yano: Micropor. Mesopor. Mater. Vol. 93 (2006), p.190.

Google Scholar

[9] T. Nakamura, Y. Yamada, K. Yano: J. Mater. Chem. Vol. 16 (2006), p.2417.

Google Scholar

[10] W. Stöber, A. Fink: J. Colloid Interface Sci. Vol. 26 (1968), p.62.

Google Scholar

[11] K.K. Unger, D. Kumar, M. Grün, G. Büchel, S. Lüdtke, Th. Adam, K. Schumacher, S. Renker: J. Chromatogr. A Vol. 892 (2000), p.47.

Google Scholar

[12] M. Grün, I. Lauer, K.K. Unger: Adv. Mater. Vol. 9 (1997), p.254.

Google Scholar

[13] K. Yano, Y. Fukushima: J. Mater. Chem. Vol. 13 (2003), p.2577.

Google Scholar

[14] K. Yano, Y. Fukushima: J. Mater. Chem. Vol. 14 (2004), p.1579.

Google Scholar

[15] Y. Yamada, K. Yano: Micropor. Mesopor. Mat. Vol. 93 (2006), p.190.

Google Scholar

[16] Q. Chen, L. Han, C. Gao, S. Che: Micropor. Mesopor. Mat. Vol. 128 (2010), p.203.

Google Scholar

[17] T.M. Suzuki, T. Nakamura, E. Sudo, Y. Akimoto, K. Yano: Micropor. Mesopor. Mat. Vol. 111 (2008), p.350.

Google Scholar