Microstructure and Thermal Properties of Diamond-Al Composite Fabricated by Pressureless Metal Infiltration

Article Preview

Abstract:

For obtaining materials with high thermal conductivities and suitable thermal expansion coefficient for thermal management applications, diamond/Al composites were fabricated by the low-cost pressureless metal infiltration. The resulting composites exhibited thermal conductivities as high as 518.7 W/m•K and thermal expansion coefficient as low as 4.61×10-6/K friendly matching with semiconductors materials like Si or GaAs. The diamond particles were not only well embedded, but also uniformly distributed in the metallic matrix along with SEM observations of the composites. Fractograph of the composites illustrated that aluminum matrix fracture was the dominant fracture mechanism and the stepped breakage of diamond particles indicated strong interfacial bonding between diamond and the Al matrix. The Si skeleton with coralline morphology in the interface between diamond and the matrix were found to play a role of bridge in the interfacial structure and result in distinctive interfacial bonding. Also a little content of Al4C3 were realized to have positive effect on the improved thermal conductivities for promoting interfacial bonding between aluminum and diamond. In addition, the excellent mechanical behavior of the composite was illustrated. The results shows a superior Young’s modulus of 286 GPa compared with traditional thermal management materials and relatively high bending strength of 306MPa.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 150-151)

Pages:

1110-1118

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.J. Ellsworth: Proceedings of the Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems Vol. 2 (2004), pp.707-8.

Google Scholar

[2] P.W. Ruch, O. Beffort, S. Kleiner et al.: Composites Sci. Technol. Vol. 66(2006), pp.2677-2685.

Google Scholar

[3] M.K. Premkumar, W.H. Hunt jr, R.R. Sawtell: JOM Vol. 9 (1992), pp.24-28.

Google Scholar

[4] C. Zweben: ASM Handbook Vol. 21 (2001), p.1078–84.

Google Scholar

[5] Q. Sun, O.T. Inal: Materials Science & Engineering. A, Structural Materials: Properties, Microstructure and Processing Vol. 41 (1996), p.261.

Google Scholar

[6] Xuebing LIANG, Ke CHU, Chengchang JIA: Acta Materiae Compositeae Sinica Vol. 23(6)(2008), pp.192-197.

Google Scholar

[7] Ke Chu, Zhaofang LIU, Chengchang JIA: Journal of Alloys and Compounds 490(2010), pp.453-458.

Google Scholar

[8] O. Beffort, F. A Khalid, L. Weber et al: Diamond & Related Materials Vol. 15(2006), pp.1250-1260.

Google Scholar

[9] L. Weber, C. Von Gru¨ nigen: N. Frigeni, 14th Symposium Verbundwerkstoffe undWerkstoffverbunde, 2003, p.801.

Google Scholar

[10] William B. Johnson, B. Sonuparlak: Journal of Materials Research Vol 8(5)(1993), pp.1169-1173.

Google Scholar

[11] A. Vlasov, V. Ralchenko et al.: Diamond Relat. Mater. Vol. 9 (2000), p.1104.

Google Scholar

[12] D.J. Twitchen, C.S.J. Pickles, S.E. Coe, R.S. Sussmann, C.E. Hall: Diamond Relat. Mater. Vol. 10 (2001), p.731.

Google Scholar

[13] Cheng HM, Zhou BL, Kitahara A et al.: Mater. Res. Vol. 11(5)(1996), p.1284–92.

Google Scholar

[14] Coltters RG: Mater. Sci. Eng. Vol. 76(1-2) (1985), pp.1-50.

Google Scholar

[15] Lin RY: Key Eng Mater. Vol. 104-107 (1995), pp.507-22.

Google Scholar

[16] Lee JC, Lee J-I, Lee H-I. J : Mater. Sci. Lett. Vol. 15(1996), p.1539–42.

Google Scholar

[17] Cui Yan, Wang Lifeng, Ren Jianyue: Chinese Journal of Aeronautics Vol. 21 (2008), pp.578-584.

Google Scholar

[18] D.P.H. Hasselman, L.F. Johnson: J. Compos. Mater: Vol. 21(1989), p.508.

Google Scholar

[19] E.T. Swartz, R.O. Phol: Rev. Mod. Phys: Vol. 61(1989), p.605.

Google Scholar

[20] Gu M. Zhang G, Wu R: Prog Nat Sci: Vol. 7 (1997), pp.600-7.

Google Scholar

[21] Ke Chu, ChengChang Jia, Xuebing Liang et al.: Materials and Design: Vol. 30 (2009), pp.4311-16.

Google Scholar

[22] R. J Stoner, H.J. Maris, T. R Anthony et al.: Physical Review Letters Vol. 68 (1992), p.1563.

Google Scholar

[23] YANG Bo, YU Jia-kang, CHEN Chuang: Trans. Nonferrous Met. Soc. China Vol. 19 (2009), pp.1167-1173.

Google Scholar

[24] A. Miserez, S. stucklin, A. Rossoll et al.: Mater. Sci. Technol. Vol. 18(11)(2002), pp.1461-1470.

Google Scholar

[25] K.A. Weidenmann, R. Tavanar, L. Weber: Mater. Sci. Eng. A Vol. 523 (2009), pp.226-234.

Google Scholar