Tunable Multimode Filtering of Solid Acoustic Waves in a Three-Component Phononic Crystal Slab

Article Preview

Abstract:

Using of the multiple scattering methods, we characterize the positive and negative multi-refraction and transmission properties of a solid-based phononic crystal composed of coated solid inclusions in view of its applications in tunable multimode filtering. The geometrical parameters are chosen so that a left-handed longitudinal wave mode and a right-handed transverse wave mode, are simultaneously obtained in this three-component phononic crystal. When multimode Gaussian beams are placed transmitting through the phononic crystal slab, both positive and negative refractions are observed. We then study the individual propagation behavior of different modes. The angle dependent transmission beams with different energy distributions are found at the other side of the slab. Transmitted transverse waves coming from different directions incidence finally walk together into four oriented beams. Meanwhile, longitudinal wave incidence with different directions behaves simply as negative refraction in the slab. A far-field longitudinal wave image can be achieved being excited by a longitudinal wave point source. The three-component phononic crystal slab thus can be served as an alternate in tunable multimode filtering devices.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 150-151)

Pages:

1625-1639

Citation:

Online since:

October 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. C. Netti, A. Harris, J. J. Baumberg, D. M. Whittaker ,M. B. D. Charlton, M. E. Zoorob, and G. J. Parker, Optical Trirefringence in photonic crystal waveguides, Phys. Rev. Lett. 86 (2001), pp.1526-1529.

DOI: 10.1103/physrevlett.86.1526

Google Scholar

[2] Jill Elliott, Igor I. Smolyaninov, Nikolay I. Zheludev, and Anatoly V. Zayats, Wavelength dependent birefringence of surface plasmon polaritonic crystals, Phys. Rev. B. 70 (2004), p.233403.

DOI: 10.1103/physrevb.70.233403

Google Scholar

[3] A. A. Zharov, N. A. Zharova, R. E. Noskov, I. V. Shadrivov, and Y. S. Kivshar, Birefringent left-handed metamaterials and perfect lenses for vectorial fields, New J. Phys. 7 (2005), p.220.

DOI: 10.1088/1367-2630/7/1/220

Google Scholar

[4] H. Kosaka, et al. Superprism phenomena in photonic crystals, Phys. Rev. B. 58 (1998), p.1009.

Google Scholar

[5] R. Gaji´c, R. Meisels, F. Kuchar, K. Hingerl, All-angle left-handed negative refraction in kagomé and honeycomb lattice photonic crystals, Opt. Express. 13 (2005), p.8596.

DOI: 10.1103/physrevb.73.165310

Google Scholar

[6] V. G. Veselago, Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities, Sov. Phys. Usp. 10 (1968), p.509.

DOI: 10.1070/pu1968v010n04abeh003699

Google Scholar

[7] J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85 (2000), p.3966.

DOI: 10.1103/physrevlett.85.3966

Google Scholar

[8] R. A. Shelby, D. R. Smith, and S. Schultz, Experimental verification of a negative index of refraction, Science. 292 (2001), pp.77-79.

DOI: 10.1126/science.1058847

Google Scholar

[9] P. M. Valanju, R. M. Walser, and A. P. Valanju, Wave refraction in negative-index media: always positive and very inhomogeneous, Phys. Rev. Lett. 88 (2002), p.187401.

DOI: 10.1103/physrevlett.88.187401

Google Scholar

[10] A. A. Houck, J. B. Brock, and I. L. Chuang, Experimental observations of a left-handed material that obeys snell's law, Phys. Rev. Lett. 90 (2003), p.137401.

DOI: 10.1103/physrevlett.90.137401

Google Scholar

[11] M. Notomi, Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap, Phys. Rev. B. 62 (2000), pp.10696-10705.

DOI: 10.1103/physrevb.62.10696

Google Scholar

[12] C. Luo, S. G. Johnson, J. D. Joannopoulos and J. B. Pendry, All-angle negative refraction without negative effective index, Phys. Rev. B. 65 (2002), p.201104.

DOI: 10.1103/physrevb.65.201104

Google Scholar

[13] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Electromagnetic waves negative refraction by photonic crystals, Nature. 423 (2003), p.604.

DOI: 10.1038/423604b

Google Scholar

[14] X. H. Hu, Y. F. Shen, X. H. Liu, R. T. Fu, J. Zi, Superlensing effect in liquid surface waves, Phys. Rev. E. 69 (2004), p.030201.

DOI: 10.1103/physreve.69.030201

Google Scholar

[15] X. D. Zhang, and Z. Liu, Negative refraction of acoustic waves in two-dimensional phononic crystals, Appl. Phys. Lett. 85 (2004), p.341.

DOI: 10.1063/1.1772854

Google Scholar

[16] S.X. Yang, J.H. Page, Z.Y. Liu, M.L. Cowan, C.T. Chan and P. Sheng. Focusing of sound in a 3D phononic crystal, Phys. Rev. Lett. 93 (2004), p.024301.

DOI: 10.1103/physrevlett.93.024301

Google Scholar

[17] L. Feng, X. P. Liu , M. H. Lu , Y. B. Chen , Y. F. Chen , Y. W. Mao , J. Zi, Y. Y. Zhu , S. N. Zhu , N. B. Ming, Acoustic backward-wave negative refractions in the second band of a sonic crystal, Phys. Rev. Lett. 96 (2006), p.014301.

DOI: 10.1103/physrevlett.96.014301

Google Scholar

[18] J. Li, Z. Liu, C. Qiu, Negative refraction imaging of acoustic waves by a two-dimensional three-component phononic crystal, Phys. Rev. B. 73 (2006), p.054302.

DOI: 10.1103/physrevb.73.054302

Google Scholar

[19] F. Cervera, L. Sanchis, J. V. Sanchez-Perez, R. Martinez-Sala, C. Rubio, F. Meseguer, C. Lopez, D. Caballero, and J. Sanchez-Dehesa, Refractive Acoustic Devices for Airborne Sound, Phys. Rev. Lett. 88 (2002), p.023902.

DOI: 10.1103/physrevlett.88.023902

Google Scholar

[20] N. Garcia, M. Nieto-Vesperinas, E. V. Ponizovskaya, and M. Torres, Theory for tailoring sonic devices: Diffraction dominates over refraction, Phys. Rev. E. 67 (2003), p.046606.

DOI: 10.1103/physreve.67.046606

Google Scholar

[21] A. Hladky-Hennion, J. Vasseur, B. Dubus, B. Djafari-Rouhani, Didace Ekeom, and B. Morvan, J. Appl. Phys. 104 (2008), p.064906.

DOI: 10.1063/1.2978379

Google Scholar

[22] A. Sukhovich, L. Jing, and J. H. Page, Phys. Rev. B 77 (2008), p.014301.

Google Scholar

[23] M. H. Lu, C. Zhang, L. Feng, J. Zhao, Y. F. Chen, Y. W. Mao, J. Zi, Y. Y. Zhu, S. N. Zhu, N. B. Ming, Negative birefraction of acoutic waves in a sonic crystal, Nature Mater. 6 (2007), p.744.

DOI: 10.1038/nmat1987

Google Scholar

[24] J. Mei, Z. Liu, J. Shi, and D. Tian, Theory for elastic wave scattering by a two-dimensional periodical array of cylinders: An ideal approach for band-structure calculations, Phys. Rev. B. 67 (2003), p.245107.

DOI: 10.1103/physrevb.67.245107

Google Scholar

[25] Y. Y. Chen and Z. Ye, Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays, Phys. Rev. E. 64 (2001), p.036616.

DOI: 10.1103/physreve.64.036616

Google Scholar

[26] V. A. Podolskiy and E. E. Narimanov, Near-sighted superlens, Opt. Lett. 30 (2005).

DOI: 10.1364/ol.30.000075

Google Scholar