First-Principles Calculation of Elastic Properties of TiB2 and ZrB2

Article Preview

Abstract:

Based on Density Functional Theory (DFT), using first-principles pseudopotential plane wave method, elastic properties and electronic structure of TiB2 and ZrB2 were calculated. The elastic constants of these compounds were calculated by Voigt-Reuss-Hill method. The results show that the elastic modulus of TiB2 and ZrB2 are 594 and 520 GPa, and the shear modulus are 268 and 229 GPa, respectively. Pugh empirical criterion and Poisson's ratio show that the two compounds are very brittle, and the brittleness of TiB2 is higher than ZrB2. Finally, the differences in elastic properties between TiB2 and ZrB2 result form their electronic structures.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 150-151)

Pages:

40-43

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.S. Spoor, J.D. Maynard, M.J. Pan, D.J. Green, J.R. Hellmann, T. Tanaka: Appl. Phys. Lett. Vol. 70 (1997), p. (1959).

Google Scholar

[2] S. Hong, C.L. Fu, M.H. Yoo: Intermetallics. Vol. 7 (1999), p.1169.

Google Scholar

[3] L.Y. Zhang, Y.J. Peng, Q.H. Jin, W.Y. Fang, L.B. Hui, D.D. Tong: Acta. Physa. sinica. Vol. 55 (2006), p.4193.

Google Scholar

[4] J. Sun, Q. Yao: The Chinese Journal of Nonferrous Metals Vol. 16 (2006), p.1166.

Google Scholar

[5] K.S. Chan, Y.D. Lee, Y.M. Pan: Metal Mater. Trans. A. Vol. 37 (2006), p.523.

Google Scholar

[6] M.D. Sengall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne: J Phys: Condens Matter. Vol. 14 (2002), p.2717.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[7] D. Vanferbilt: Phys. Rev. B. Vol. 41 (1990), p.7892.

Google Scholar

[8] H.J. Monkhorst, J.D. Pack: Phys. Rev. B. Vol. 13 (1976), p.5188.

Google Scholar

[9] B. Post, F.W. Glaser, D. Moskowitz: Acta. Metallurgica. Vol. 2 (1954), p.20.

Google Scholar

[10] J.Y. Li, H.M. Chen, Q.Z. Cao, Q.L. Xie, J.L. Huang: Journal of Guangxi University: Nat. Sci. Ed. Vol. 34 (2009), p.1001.

Google Scholar

[11] P.S. Spoor, J.D. Maynard, M.J. Pan, D.J. Green, J.R. Hellmann, T. Tanaka. Appl. Phys. Lett. Vol. 70 (1997), p. (1959).

Google Scholar

[12] K.B. Panda, K.S. Chandran. Comp. Mater. Sci. Vol. 35 (2006), p.134.

Google Scholar

[13] Information on http: /www. paper. edu. cn/en/paper. php. serial_number=201003-1079.

Google Scholar

[14] N.Y. Zhuang, X.Y. Qing, L.X. Bo, P.H. Jian: Acta. Metallurgica Sinica. Vol. 7 (2007), p.693.

Google Scholar

[15] S.F. Pugh: Philosophical Magazine Vol. 45 (1954), p.823.

Google Scholar

[16] Q. Yao, J. Sun: Materials Research and Application Vol. 1 (2007), p.281.

Google Scholar

[17] L.G. Wu, P.Q. Wu, L.J. Chen, Z.Z. Zhu, Y. Yang: Electrochemical Vol. 9 (2003), p.1006.

Google Scholar