Effect of Deformation and Annealing on Microstructure and Properties of Composite Cu-10Fe-3Ag Wire

Article Preview

Abstract:

A Cu–10Fe–3Ag alloy was produced by means of induction melting. The effects of aging processes on microhardness and conductivity of Cu–10Fe–3Ag alloy were studied. The microstructure of the alloy was examined using transmission electron microscope (TEM). The results show that: presence of Ag can accelerate γ-Fe precipitation from in the Cu matrix, but also reduces the thermal stability of Fe fibers. As the annealing temperature increasing, the microhardness and conductivity of Cu-10Fe-3Ag in-situ composite increase at first and then decrease. Annealed at 475 for 6h, the alloy has an excellent combination of microhardness and conductivity, the microhardness and conductivity reach 209HV and 58.4% IACS, respectively. The Fractures of the alloy are all ductile rupture and the dimples are smaller with the annealing temperature increasing.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 150-151)

Pages:

673-679

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Grunberger, M. Heilmaier, L. Schultz, Physica B 294–295 (2001) 643–647.

Google Scholar

[2] K. Inoue, T. Takeuchi, T. Kiyoshi, T. Asano, Y. Sakai, K. Itoh, G. Kido, H. Maeda, Physica B 211 (1995) 17–22.

DOI: 10.1016/0921-4526(94)00930-t

Google Scholar

[3] H. Maeda, K. Inoue, T. Kiyoshi, T. Asano, Y. Sakai, T. Takeuchi, K. Itoh, H. Aoki, G. Kido, Physica B 216 (1996) 141–145.

DOI: 10.1016/0921-4526(95)00459-9

Google Scholar

[4] J.T. Wood, J.D. Embury, M.F. Ashby, Acta Mater. 45 (1997) 1099–1104.

Google Scholar

[5] J. Freudenberger, N. Kozlova, A. Gaganov, L. Schultz, H. Witte, H. Jones, Cryogenics 46 (2006) 724–729.

DOI: 10.1016/j.cryogenics.2006.06.002

Google Scholar

[6] L. Meng, J.B. Liu, Mater. Sci. Forum 539–543 (2007) 2798–2803.

Google Scholar

[7] C. Biselli, D.G. Morris, Acta Mater. 44 (1996) 493–504.

Google Scholar

[8] S.I. Hong, J.S. Song, Metall. Mater. Trans. A 32A (2001) 985–991.

Google Scholar

[9] G.A. Jerman, I.E. Anderson, J.D. Verhoeven, Metall. Trans. A 24A (1993)35–42.

Google Scholar

[10] J.S. Song, S.I. Hong, J. Alloy. Compd. 311 (2000) 265–269.

Google Scholar

[11] J.S. Song, S.I. Hong, Y.G. Park, J. Alloy. Compd. 388 (2005) 69–74.

Google Scholar

[12] J.P. GE, Z.Q. YAO. Journal of DALIAN Railway Institute. 25(2004)57-63.

Google Scholar

[13] Y. Watanabe, J. Murakami and H. Miura. Mater. Sci. Eng. A 338(2002)299-304.

Google Scholar

[14] W. W. Mullins. Acta Metall., 6(1958)414-423.

Google Scholar

[15] J. W. S. Rayleigh. Mater. Sci. Eng. 11 (1980)57-69.

Google Scholar

[16] T. H. Courtney, J.C. M. Kampe. Acta Metall., 37(1989)1747-1758.

Google Scholar

[17] M.S. LI,Z.Q. YAO, S.H. LIU. Hot working technology. 2(2004)27-28.

Google Scholar

[19] H.Y. GAO, J. WANG, D. SHU. Scripta Mater, 53(2005)1105-1109.

Google Scholar