Effects of RE on the Microstructure and Mechanical Properties of Electrodeposited Copper Foil

Article Preview

Abstract:

Electrodeposited copper foil was prepared by direct current electrodeposited method. Effects of different RE additions including 0, 3mg/L, 6mg/L and 9mg/L on the morphology, roughness, and mechanical properties of electrodeposited copper foil are investigated at high current density and high flow rate by SEM (scanning electron microscope), roughness measuring instrument, microcomputer control electronic universal testing machine and high temperature drawing machine. The results reveal that with increasing in RE content, the grain size in the copper foil is refined with more homogeneous distribution and denser, mechanical properties can be improved also. The desirable grain size in the copper foil with maximum value of the mechanical properties and the roughness can be obtained with approximately 6 mg/L RE content.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 150-151)

Pages:

68-71

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.A. Vas'ko, I. Tabakovic, S.C. Riemer, et al: Microelectron. Eng Vol. 75 (2004), p.71.

Google Scholar

[2] K Kondo, H Murakami: J. Electrochem. Soc Vol. 151 (2002), p. C514.

Google Scholar

[3] L Bonou, M Eyraud and R Denoyel, et al: Electrochim. Acta Vol. 47 (2002), p.4139.

Google Scholar

[4] L. W. Liu, Q. Y. Wu, B. L. Lu, et al: Electroplat. Pollut. Cont Vol. 24 (2004), p.7.

Google Scholar

[5] T. P. Moffat, D Wheeler, D Josell: J. Electrochem. Soc Vol. 151 (2004), p. C262.

Google Scholar

[6] Y Zhang and G. C. Li: China. J. Rare. Met Vol. 24 (2000), p.66 (In Chinese).

Google Scholar

[7] C. J. Milora, J. F. Henrickson and W. C. Hahn: J. Electrochem. Soc Vol. 120 (1973), p.488.

Google Scholar

[8] J. J. Kelly and A. C. West: J. Electrochem. Soc Vol. 145 (1998), p.472.

Google Scholar

[9] J. J. Kelly, C. Y. Tian and A. C. West: J. Electrochem. Soc Vol. 146 (1999), p.2540.

Google Scholar

[10] K Kondo, N Yamakawa, Z Tanaka, et al: J. Electroanalyt. Chem Vol. 559 (2003), p.137.

Google Scholar

[11] D. F. Suarez, F. A. Olson: J. Appl. Electrochem Vol. 22 (1992), p.1002.

Google Scholar

[12] M. A. Alodan and W. H. Smyrl: J. Electrochem. Soc Vol. 145 (1998), p.957.

Google Scholar

[13] G Fabricius, K Kontturi and G Sundholm: Electrochim. Acta Vol. 39 (1994), p.2353.

Google Scholar

[14] C. H. Lee, S. C. Lee and J. J. Kim: Electrochim. Acta Vol. 50 (2005), p.3563.

Google Scholar

[15] Q Li, M Gu, X H Xian, et al: Acta. Chim. Sin Vol. 65 (2007), p.881 (In Chinese).

Google Scholar

[16] L Mirkova, N Petkova and I Popova, et al: Hydrometallurgy Vol. 6 (1994), p.201.

Google Scholar

[17] M. H. Zhu and L. Q. Li: Electroplat. Pollution. Cont vol. 25 (2006), p.46 (In Chinese).

Google Scholar

[18] L. J. Chen, Y. P. Kang and H Hong: Electroplat. Finish Vol. 16 (1997), p.41 (In Chinese).

Google Scholar

[19] B Hong: Study on texture and internal stress of electrodeposited copper film (doctor dissertation, shanghai: Shanghai Jiao Tong University, 2008) (In Chinese).

Google Scholar

[20] S. Z. Zhang, F Ye and T Jiang: Trans. Nonferrous Met. Soc. China Vol. 15 (2005), p.167 (In Chinese).

Google Scholar