Structure, Electrical and Optical Properties of Ni-Doped Cu3N Films Deposited by Radio Frequency Magnetron Sputtering

Article Preview

Abstract:

Ni-doped Cu3N films were prepared by radio frequency (RF) reactive magnetron sputtering method under different N2/(N2+Ar) ratios at room temperature. X-ray diffraction (XRD) patterns show that Ni-doped Cu3N films have the preferred growth along the (100) plane. The lattice parameters of Ni-doped Cu3N films increases obviously compared with the pure Cu3N films, which indicate that some Ni atoms are incorporated into the Cu3N host lattice. The electrical resistivity of Ni-doped Cu3N films has a remarkable change and decreases as the nitrogen ratio decreases. The optical energy gap of Ni-doped Cu3N film is around 1 eV which has no obvious change. The morphology and the thermal stability of doped Cu3N films were also studied.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 150-151)

Pages:

72-75

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Maruyama, T. Morishita, Appl. Phys. Lett. Vol. 69 (1996), p.890.

Google Scholar

[2] Y. Du, A.L. Ji, L.B. Ma, Y.Q. Wang, Z.X. Cao, J. Crystal Growth Vol. 280 (2005), p.490.

Google Scholar

[3] D. M. Borsa, S. Grachev, D. O. Boerma, IEEE TRANSACTIONS ON MAGNETICS, Vol. 38 (2002), p.2709.

Google Scholar

[4] N. Pereira, L. Dupont, J. M. Tarascon, L. C. Klein, G. G. Amatucci, J. Electrochem. Soc. Vol. 150(9) A (2003), p.1273.

Google Scholar

[5] M. Asano, K. Umeda, A. Tasaki, Jpn. J. Appl. Phys. Vol. 29 (1990), p. (1985).

Google Scholar

[6] T. Maruyama, T. Morishita, J. Appl. Phys. Vol. 78 (1995), p.4104.

Google Scholar

[7] T. Nosaka, M. Yoshitake, A. Okamoto, S. Ogawa, Y. Nakayama, Thin Solid Films Vol. 348 (1999), p.8.

Google Scholar

[8] K.J. Kim, J.H. Kim, J.H. Kang, J. Crystal Growth Vol. 222 (2001), p.767.

Google Scholar

[9] J.F. Pierson, Vacuum Vol. 66 (2002), p.59.

Google Scholar

[10] Z.Q. Liu, W.J. Wang, S. Chao, S.K. Zheng, Thin Solid Films Vol. 325(1998), p.55.

Google Scholar

[11] S. Ghosh, F. Singh, D. Choudhary, D.K. Avasthi, V. Ganesan, P. Shah, A. Gupta Surf. Coat. Technol Vol. 142–144 (2001), p.1034.

Google Scholar

[12] T. Nosaka, M. Yoshitake, A. Okamoto, S. Ogawa, Y. Nakayama, Appl. Surf. Sci. Vol. 169–170 (2001), p.358.

Google Scholar

[13] F. Fendrych, L. Soukup, L. Jastrabík, M. Š ícha, Z. Hubička, D. Chvostová, A. Tarasenko, V. Studnička, T. Wagner Diamond Relat. Mater. Vol. 8(1999), p.1715.

DOI: 10.1016/s0925-9635(99)00063-1

Google Scholar

[14] L. Soukup, M. Šicha, F. Fendrych, L. Jastrabík, Z. Hubička, D. Chvostová et al, Surf. Coat. Technol. Vol. 116–119 (1999), p.321.

Google Scholar

[15] G. Soto, J.A. Diaz, W. de la Cruz, Meter. Lett. Vol. 57 (2003), p.4130.

Google Scholar

[16] D.M. Borsa, D.O. Boerma, Surf. Sci. Vol. 548 (2004), p.95.

Google Scholar

[17] Y. Hayashi, T. Ishikawa and D. Shimokawa, J. Alloys. Comp. Vol. 330-332 (2002), P. 348.

Google Scholar

[18] J. Wang, J.T. Chen, et al. J. Crystal Growth, Vol. 286 (2006), p.407.

Google Scholar

[19] S. Terada and H. Tanaka, and K. Kubota, J. Cryst. Growth. Vol. 94 (1989), p.567.

Google Scholar

[20] U. Hahn and W. Weber, Phys. Rev. B. Vol. 53 (1996), p.12684.

Google Scholar

[21] M.G. Moreno-Armenta, A. Martínez-Ruiz, and N. Takeuchi, Solid State Sci. Vol. 6 (2004), p.9.

Google Scholar