Performance of the Self-Breathing Air Direct Methanol Fuel Cell with Modified Poly (Vinylidene Fluoride) Grafted onto a Blended Polystyrene Sulfonated Acid (m-PVDF-g-PSSA) Membranes

Article Preview

Abstract:

This paper reports performance date for the direct methanol fuel cell (DMFC) with membrane electrode assemblies using modified poly (vinylidene fluoride) grafted the blended polystyrene sulfonated acid membranes (m-PVDF-g-PSSA) based on modified PVDF (poly vinylidene fluoride ) and the bended PSSA (polystyrene sulphonated acid). The membrane exhibited low methanol permeation coefficient, and good proton-conductivity. Furthermore, these materials have potentially lower methanol cross-over when compared to standard Nafion-type membranes. The membranes electrode assemblies were based on Nafion®-bonded carbon-supported catalyst: platinum/ruthenium for the anode and platinum for the cathode. The catalyst layer was coated directly on the treated membrane. To simulate the practical application, unit cell operates at room temperature and ambient pressure using liquid methanol and ambient air. A methanol solution is filled in the feed reservoir, and the cathode is exposed to ambient air. The cell performance of the self-breathing air DMFC, for short duration (<100h) testing, with the low cost membranes is superior to that of cells based on Nafion under identical operating conditions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 152-153)

Pages:

149-153

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Jaesung Han, Eun-Sung Park: Power Sources Vol. 112 : 477–483 (2002).

Google Scholar

[2] M.P. Hogarth, G.A. Hards: Platinum Met. Rev. Vol. 40 (1996) p.150.

Google Scholar

[3] S. Wasmus, A. Küver:J. Electroanal. Chem. 461 (14) (1999).

Google Scholar

[4] A.K. Shukla, P.A. Christensen, A.J. Dickinson, A. Hamnett:J. Power Sources Vol. 76(1998) p.54.

Google Scholar

[5] K. Scitt, W.M. Taama, P. Argyropoulos, J. Power Sources Vol. 79 (1999), p.43.

Google Scholar

[6] J. Kua, W.A. Goddard Ⅲ:J. Am. Chem. Soc. Vol. 121 -109(1999), p.28.

Google Scholar

[7] C. HeitnerWirguin: J. Membrane Sci. Vol. 120(1)(1996).

Google Scholar

[8] J.J. Fontanella M.C. Wintersgill R.S. Chen,Y. Wu. And S. G. Greenbaum: Electrochim. Acta Vol. 40 (1995), p.2321.

Google Scholar

[9] X. M. Ren, M. S. Wilson and S. Gottesfeld:J. Electrochem. Soc 143(1996), p.12.

Google Scholar

[10] B. Gupta, O. Haas, and G. G. Scherer: J. Appl. Polym. Sci 57(1995), p.855.

Google Scholar

[11] T. Lehtinen,G. SundholmandS. Holmberg:J. Electrochem. Soc Vol. 144(1997), p.267.

Google Scholar

[12] K. Scott, W. M. Taama and P. Argyropoulos:J. Membrane. Sci 171, (2000), p.119.

Google Scholar

[13] M. Doyle, M. E. Lewittes, M.G. Roelofs: J. Membrane. Sci Vol. 184(2001), p.275.

Google Scholar

[14] E. D. Owen, M. Shah and M. V. Twigg: Polym. Degrad. Stab Vol. 51 (1996), p.151.

Google Scholar

[15] G.B. Guo, S.L. An and S.S. Kou: Acta Physico Chimica Sinica, Vol. 10: 2161-2167(2009).

Google Scholar

[16] Doo Hwan jung, C. H. Lee, and D. R. Shin:J. Power Sources Vol. 71 169-173(1998).

Google Scholar

[17] L. Jörissen, V. Gogel, J. Kerres, J. Garche: Power Sources. 105 Power Sources 267-273(2002).

DOI: 10.1016/s0378-7753(01)00952-1

Google Scholar