Photoluminescence and Structural Characteristics of SnO2 Nanopetals Synthesized by Thermal Evaporation

Article Preview

Abstract:

A new nanostructure, (2D) nanopetal of SnO2, has been grown on single silicon substrates by Au-Ag alloying catalyst assisted carbothermal evaporation of SnO2. Field emission scanning electron microscopy (FESEM), x-ray diffraction (XRD) and Raman are employed to identify the morphology and structure of the synthesized productions. Room-temperature photoluminescence (PL) is used to characterize the luminescence of SnO2 nanostructure. Three new peaks at 356, 450 and 489 nm in the measured photoluminescence spectra are observed, implying that more luminescence centers exist in SnO2 nanopetals due to nanocrystals and defects. The growth of the SnO2 nanopetals is discussed on the basis of the self-catalyst mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 152-153)

Pages:

697-701

Citation:

Online since:

October 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan: Adv. Mater Vol. 15 (2003), pp.353-389.

DOI: 10.1002/adma.200390087

Google Scholar

[2] Y. Wu, B. Yang, B. Zong, H. Sun, Z. Shen and Y. Feng: J. Mater. Chem Vol. 14 (2004), P. 469-477.

Google Scholar

[3] S. Ferrere, A. Zaban and B.A. Gsegg: J. Phys. Chem. B Vol. 101 (1997), P. 4490-4494.

Google Scholar

[4] Y.S. He, J.C. Cambell, R.C. Murphy, M.F. Arendt and J.S. Swinnea: J. Mater. Res, Vol. 8 (1993), pp.3131-3134.

Google Scholar

[5] G. Ansari, P. Boroojerdian, S.R. Sainkar, R.N. Karekar, R.C. Alyer and S.K. Kulkarni: Thin Solid Films, Vol. 295 (1997), pp.271-276.

DOI: 10.1016/s0040-6090(96)09152-3

Google Scholar

[6] O.K. Varghese and L.K. Malhotra: Sens. Actuat. B Vol. 53 (1998), pp.19-24.

Google Scholar

[7] X.F. Duan, Y. Huang, Y. Cui, J. Wang and C.M. Leiber: Nature Vol. 409 (2001), pp.66-69.

Google Scholar

[8] E.R. Leite, I.T. Weber, E. Longo and J.A. Varela: Adv. Mater Vol. 12 (2000), p.965.

Google Scholar

[9] S. Iijima: Nature Vol. 375 (1991), pp.769-772.

Google Scholar

[10] Y.K. Liu, C.L. Zheng, W.Z. Wang, C.R. Yin and G.H. Wang: Adv. Mater Vol. 13 (2001), p.1887.

Google Scholar

[11] B. Wang, Y. H. Yang, C. X. Wang and G. W. Yang: Chem. Phys. Lett Vol. 407 (2005), pp.347-353.

Google Scholar

[12] S.P.S. Porto, P.A. Fleury and T.C. Damen: Phy. Rev Vol. 154 (1967), pp.522-526.

Google Scholar

[13] S.H. Sun, G.W. Meng, G.X. Zhang, T. Gao, B.Y. Geng, L.D. Zhang and J. Zuo: Chem. Phys. Lett Vol. 376 (2003), pp.103-107.

Google Scholar

[14] X.S. Peng, L.D. Zhang, G.W. Meng, Y.T. Tian, Y. Lin, B.Y. Geng and S.H. Sun: Vacuum Vol. 93 (2003), pp.1760-1763.

Google Scholar

[15] L. Abello, B. Bochu, A. Gaskov, S. Koudryavtseva, G. Lucazeau and M. Roumyantesva: J. Solid State Chem Vol. 135 (1998), pp.78-83.

DOI: 10.1006/jssc.1997.7596

Google Scholar

[16] E.J.H. Lee, C. Ribeiro, T.R. Giraldi, E. Longo, E.R. Leite: Appl. Phys. Lett Vol. 84 (2004), pp.1745-1747.

Google Scholar

[17] T.W. Kimand, D.U. Lee: J. Appl. Phys Vol. 88 (2000), pp.3759-3762.

Google Scholar

[18] J. Jeong, S.P. Choi, C. Chang, D.C. Shin, J.S. Park, B.T. Lee, Y.J. Park and H.J. Song: Solid State Commun Vol. 127 (2003), pp.595-597.

Google Scholar

[19] F. Gu, S.F. Wang, M.K. Lu, G.J. Zhou, D Xu and D.R. Yuan: J. Phys. Chem. B Vol. 108 (2004), pp.8119-8123.

Google Scholar

[20] D. Davazoglou: Thin Solid Films Vol. 302 (1997), pp.204-213.

Google Scholar

[21] B. Wang, Y.H. Yang, C. X. Wang, N. S. Xu and G. W. Yang:J. Appl. Phys Vol. 98 (2005), pp.124303-4.

Google Scholar

[22] B. Wang, Y. H. Yang, C. X. Wang and G. W. Yang: J. Appl. Phys Vol. 98 (2005), pp.073520-5.

Google Scholar

[23] S. H. Sun, G.W. Meng, M.G. Zhang, X.H. An, G.S. Wu and L.D. Zhang: J. Phys. D: Appl. Phys Vol. 37 (2004), pp.409-412.

Google Scholar