Study of Hot Compression Behavior of ZK60 Magnesium Alloy at Elevated Temperature

Abstract:

Article Preview

The hot compression behavior of ZK60 magnesium alloy was investigated at the temperatures from 523 to 673K and strain rates from 0.001 to 1s-1 on Gleeble-1500 thermal simulator. The results show that flow stress of ZK60 magnesium alloy decreases with the increase of deformation temperature and the decrease of strain rate. The flow stress curves obtained from experiments can be described in four different stages, i.e., work hardening stage, transition stage, softening stage and steady stage. For higher temperature and lower strain rate, the transition and softening stage are less obvious. The onset of dynamic recrystallization (DRX) occurred before the stress peak in true stress-true strain curves. The critical stress characterizing the onset of DRX rises with the increase of strain rate and/or the decrease of deformation temperature. The constitutive equation of ZK60 magnesium alloy during hot compression was constructed allowing for the effect of true strain on materials constants. The predicted stress-strain curves according to the constitutive equation are in good agreement with experimental results.

Info:

Periodical:

Advanced Materials Research (Volumes 154-155)

Edited by:

Zhengyi Jiang, Xianghua Liu and Jinglong Bu

Pages:

1-10

DOI:

10.4028/www.scientific.net/AMR.154-155.1

Citation:

Y. B. He et al., "Study of Hot Compression Behavior of ZK60 Magnesium Alloy at Elevated Temperature", Advanced Materials Research, Vols. 154-155, pp. 1-10, 2011

Online since:

October 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.