Effect of Working Pressure on Microstructure and Mechanical Properties of Magnetron Sputtered ZrN Coatings

Article Preview

Abstract:

The influence of working pressure on microstructure and mechanical properties of magnetron sputtered ZrN coatings were systemically investigated. The results reveal that a decreased working pressure results in preferred orientation evolution from (111) to (200) and cross-sectional morphologies transition from columnar structure to equiaxed grains. These microstructural changes are considered responsible for an increase in hardness and modulus with decreasing working pressure. Chip spallation and plastic deformation failure modes are observed during scratch testing, and the increased critical loads are attributed to higher hardness and elastic modulus, as well as moderate compressive stress at lower working pressure.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 154-155)

Pages:

1659-1663

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Panjan, B. Navinsek, A. Zabkar, J. Fiser: Thin Solid Films Vol. 228 (1993), P. 233.

Google Scholar

[2] E. Kelesoglu, C. Mitterer, M.K. Kazmanli, M. Urgen: Surf. Coat. Technol. Vol. 116-119 (1999), P. 133.

Google Scholar

[3] C.S. Chen, C.P. Liu, C.Y. Tsao, H.G. Yang: Scr. Mater. Vol. 51 (2004) 715/719.

Google Scholar

[4] J.A. Berríos-Ortíz, J.G. La Barbera-Sosa, D.G. Teer, E.S. Puchi-Cabrera: Surf. Coat. Technol. Vol. 179 (2004), P. 145.

Google Scholar

[5] M.M. Larijania, N. Tabrizia, Sh. Norouziana, A. Jafarib, S. Lahoutia, H. Haj Hosseinic, N. Afsharia: Vacuum Vol. 81 (2006), P. 550.

Google Scholar

[6] A. Bubenzer, B. Dischler, G. Brandt, P. Koidl: J. Appl. Phys. Vol. 54 (1983), P. 4590.

Google Scholar

[7] C. Noyan, J.B. Cohen: Residual Stress, Measurement by Diffraction and Interpretation (Springer-Verlag, New York 1987).

Google Scholar

[8] W.C. Oliver, G.M. Pharr: J. Mater. Res. Vol. 7 (1992), P. 1564.

Google Scholar

[9] G. Abadias, Y.Y. Tse, Ph. Guérin: J. Appl. Phys. Vol. 99 (2006), P. 113519.

Google Scholar

[10] E.W. Niu, L. Li, G.H. Lv, H. Chen, W.R. Feng, S.H. Fan, S.Z. Yang, X.Z. Yang: Mater. Sci. Eng., A Vol. 460-461 (2007), P. 135.

Google Scholar

[11] P.H. Mayrhofer, C. Mitterer, H. Clemens: Prog. Mater. Sci. Vol. 51 (2006), P. 1032.

Google Scholar

[12] S.J. Bull, E.G. Berasetegui: Tribol. Int. Vol. 39 (2006), P. 99.

Google Scholar

[13] H.L. Wang, S. Zhang, Y.B. Li, D. Sun: Thin Solid Films. Vol. 516 (2008), P. 5419.

Google Scholar