Influence of Electromagnetic Field on the Solidification Structure of C90500 Tin Bronze

Article Preview

Abstract:

The effect of electromagnetic field on the solidification structure of C90500 tin bronze (Cu-10%Sn-2%Zn in mass%) had been investigated in this paper. The results show that applying electromagnetic field during the solidification of C90500 tin bronze can refine macrostructure and δ phase, promote columnar-to-equiaxed transition, inhibit inverse segregation of Sn, and make the dendrite degenerate. The width of eutectoid structure (α-Cu+δ) becomes smaller, and the morphology of eutectoid δ changes from coarse acicular and massive shape to fine dotlike shape. The above mentioned effects become more obvious with the increasing of current intensity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 156-157)

Pages:

1670-1674

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. M. Yin, L. P. Song, in: Handbook of Copper Processing, edited by W. J. Zhong, Metallurgical industry publishing (2007). (in Chinese).

Google Scholar

[2] Information on http: /www. copperinfo. co. uk/alloys/gunmetal.

Google Scholar

[3] A. Ludwig, M. Gruber-Pretzler and M. Wu. FDMP Vol. 1 (2005), P. 285.

Google Scholar

[4] E. A. Kumoto, R. O. Alhadeff and M. A. Martorano. Materials Science and Technology Vol. 18 (2002), P. 1001.

Google Scholar

[5] Q. Y. Zhai, Y. Yang and J. F. Xu. The Chinese Journal of Nonferrous Metals, Vol. 16 (2006), P. 1374. (in Chinese).

Google Scholar

[6] V. Kudashov, H. R. Muller and R. Wieland, in: Continuous casting, edited by H. R. Muller, WILEY-VCH Publishing (2006).

Google Scholar

[7] A. Halvaee, A. Talebi. Journal of Materials Processing Technology Vol. 118 (2001) P. 123.

Google Scholar

[8] W. Ozgowicz, W. Malec and L. Ciura. Journal of Achievements in Materials and manufacturing Engineering Vol. 24 (2007), P. 78.

Google Scholar

[9] J. Szajnar, M. Stawarz and T. Wrobbel. Journal of Achievements in Materials and manufacturing Engineering Vol. 34 (2009), P. 95.

Google Scholar

[10] C. Vives. Metall. Trans. Vol. B20 (1989), P. 623.

Google Scholar

[11] D. N. Riahi. J. Cryst. Growth Vol. 216 (2000), P. 501.

Google Scholar

[12] W. J. Boettinger, S. R. Coriell and A. L. Greer. Acta Mater. Vol. 48 (2000) P. 43.

Google Scholar

[13] G. Hansen, A. Hellawell and S. Z. Lu. Metall. Trans. Vol. A27 (1996), P. 569.

Google Scholar

[14] H. Conrad. Mater. Sci. Eng. Vol. A287 (2000), P. 205.

Google Scholar

[15] G. Amberg, J. Shiomi. FDMP Vol. 1 (2005), P. 81.

Google Scholar

[16] M. C. Flemings. ISIJ Intern. Vol. 40 (2000), P. 833.

Google Scholar

[17] A. Ludwig, M. Wu. Mater. Sci. Eng. Vol. A413-414 (2005), P. 109.

Google Scholar

[18] C. Beckermann. Inter. Mater. Reviews Vol. 47 (2002), P. 243.

Google Scholar