Intragranular Porous Aluminum Titanate Ceramics with Low Thermal Expansion and High Strength Simultaneously

Article Preview

Abstract:

Intragranular porous aluminum titanate ceramics were prepared by using graphite powder as pore-forming agent and magnesium-doped aluminum titanate powder as starting material. FESEM was employed to observe the microstructure. In order to investigate the expansion behavior and mechanical property, the dilatometric curve and three-point flexural strength of the prepared aluminum titanate ceramics were measured respectively. The results demonstrate that because of the formation of the intragranular pores, the aluminum titanate ceramics are of low thermal expansion and high strength simultaneously.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 156-157)

Pages:

1713-1716

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kin and H.S. Kwak, Can. Metall. Q., Vol. 39 (2000), pp.387-96.

Google Scholar

[2] P. Stingl, J. Heinrich, and J. Huber, Properties and applications of aluminum titanate components, pp.369-79 in Proceedings of the 2nd International Symposium on Ceramic Materials and Components for Engines (Lübeck-Travemünde, Germany, Appril 1986), Edited by W. Bunk and H. Hausner, DKG, Bad Honnef, Germany, (1986).

DOI: 10.1016/0261-3069(87)90062-8

Google Scholar

[3] M.S.J. Gani and R. McPherson, Thermochim. Acta, Vol. 7 (1973), pp.251-252.

Google Scholar

[4] J.J. Cleveland and R.C. Bradt, J. Am. Ceram. Soc., Vol. 61 (1978), pp.478-481.

Google Scholar

[5] V. Buscaglia, P. Nanni, J. Am. Ceram. Soc., Vol. 81 (1998), pp.2645-2653.

Google Scholar

[6] I.M. Low and D. Lawrence, R.I. Smith, J. Am. Ceram. Soc., Vol. 88 (2005), pp.2957-2961.

Google Scholar

[7] G. Tilloca, J. Mater. Sci., Vol. 26 (1991), pp.2809-2814.

Google Scholar

[8] P. Oikonomou, Ch. Dedeloudis, C.J. Stournaras, Ch. Ftikos, J. Eur. Ceram. Soc., Vol. 27 (2007), pp.3475-3482.

Google Scholar

[9] M. Jayasankar, S. Ananthekumar, P. Mukundan, K.G.K. Warrier, Mater. Lett., Vol. 61 (2007), pp.790-793.

Google Scholar

[10] I.B. de Arenas, O. Gil, J. Mater. Proc. Tech., Vol. 143-144 (2003), pp.838-842.

Google Scholar

[11] N.P. Padture, S.J. Benniao and H.M. Chan, J. Am. Ceram. Soc., Vol. 76 (1993), pp.2312-2320.

Google Scholar

[12] Y. Ohya and Z. Nakagawa, K. Hamano, J. Am. Ceram. Soc., Vol. 71 (1988), p. C-232-C-233.

Google Scholar

[13] Y. Ohya and Z. Nakagawa, K. Hamano, J. Am. Ceram. Soc., Vol. 70 (1987), p. C-184-C-486.

Google Scholar

[14] G. Xu, C.J. Tu, W.J. Weng, P.Y. Du, G. Shen, G.R. Han, Key Eng. Mater. Vol. 336-338 (2007), pp.1327-1330.

Google Scholar

[15] M. Takahashi, Masahiro Fukuda, Masaaki Fukuda, H. Fukuda, and T. Yoko, J. Am. Ceram. Soc., Vol. 85 (2002), pp.3025-3030.

Google Scholar