Virtual Mechanical Equipment Model Smoothing

Article Preview

Abstract:

We present a system to remove noise or smooth three dimensional (3D) virtual mechanical equipment models. Our system works not in well-known Euclidean space, but in Laplacian space [1, 2]. We transform the model from its global representation into the local representation. Then we manipulate the local property with the Laplacian Coordinates [1]. Our whole system can be modeled as a huge sparse linear system which can be solved very fast by state-of-art numerical solver [3].

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 156-157)

Pages:

355-359

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Alexa: The Visual Computer Vol. 19(2003), p.105.

Google Scholar

[2] O. Sorkine: Computer Graphics Forum Vol. 25(2006), p.789.

Google Scholar

[3] Y. Lipman, O. Sorkine, R.D. Cohen, D. Levin, C. R¨ossl and H.P. Seidel: Differential coordinates for interactive mesh editing. In Proceedings of Shape Modeling International 2004, IEEE Computer Society Press, p.181.

DOI: 10.1109/smi.2004.1314505

Google Scholar

[4] T. Igarashi, T. Moscovich and J. F. Hughes: ACM Trans. Graph. Vol. 24(2005) , p.1134.

Google Scholar

[5] Y. Lipman, O. Sorkine, D. Levin and D. Cohen-or: ACM Trans. Graph. Vol. 24(2005), p.479.

Google Scholar

[6] R. Zayer, C. R¨O SSL, Z. Karni and H. P. Seidel: Computer Graphics Forum, Vol. 24(2005), p.601.

Google Scholar

[7] M. Botsch and L. Kobbelt: ACM Trans. Graph. Vol. 23(2004), p.630.

Google Scholar

[8] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo and H.Y. Shum: ACM Trans. Graph. Vol. 23(2004), p.644.

Google Scholar

[9] O. Sorkine, Y. Lipman, R. D. Cohen, M. Alexa, C. R¨ossl and H.P. Seidel: Symposium on Geometry Processing, Vol. 71(2004), p.175.

Google Scholar

[10] M. Desbrun,M. Meyer, O. P. Schr and A. H. Barr: Implicit fairing of irregular meshes using diffusion and curvature flow. In Proceedings of ACM SIGGRAPH (1999), p.317.

DOI: 10.1145/311535.311576

Google Scholar

[11] G. Taubin: Proceedings of ACM SIGGRAPH (1995), p.351.

Google Scholar

[12] T. Kanai, H. Suzuki, J. Mitani and F. Kimura: Interactive mesh fusion based on local 3D metamorphosis. In Graphics Interface (1999), p.148.

Google Scholar

[13] S. Fleishman, I. Drori and O. D. Cohen: ACM Trans. Graph. Vol. 22(2003), p.950.

Google Scholar

[14] T. R. Jones, F. Durand and M. Desbrun: ACM Trans. Graph. Vol. 22(2003), p.943.

Google Scholar

[15] O. Sorkine and O. D. Cohen: Least-squares meshes. In Proceedings of Shape Modeling International(2004), p.191.

Google Scholar

[16] O. Sorkine, and A. Nealen: A note on Laplacian mesh smoothing. Submitted for publication (2006).

Google Scholar

[17] N. Audrew, L. Takeo, S. Olga and A. Marc: Laplacian mesh optimization. Computer graphics and interactive techniques in Australasia and South East Asia(2006), p.381.

Google Scholar

[18] S. Toledo, Taucs: a library of sparse linear solvers, version 2. 2. Tel-Aviv University, Available online at http: /www. tau. ac. il/ stoledo/taucs/. 7. (2003).

Google Scholar

[19] J. Bolz, I. Farmer, E. Grinspun and P. Schroder: Conjugate gradients and multi-grid. TOG. Vol. 22(2003), p.917.

Google Scholar