Using Symplectic Schemes for Nonlinear Dynamic Analysis of Flexible Beams Undergoing Overall Motions

Article Preview

Abstract:

In this paper, we developed a high-fidelity model to handle large overall motion of multi-flexible bodies. As a demonstration, the model is applied to a planar flexible beam system. An explicit expression of the kinetic energy is derived for the planar beams. The elastic strain energy is described via an accurate beam finite element formulation. The Hamilton equations are integrated by a symplectic integration scheme for enhanced accuracy and guaranteed numerical stability. The Hamilton and the corresponding Hamilton’s equations of beam vibration problems are formulated. It appears that the proposed symplectic finite elements are capable of providing accurate and robust simulation in the dynamic modeling of multi-flexible bodies systems with large overall motions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 156-157)

Pages:

854-861

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. A. Q. Siddiqui et al: Int. J. Nonlin. Mech. Vol. 38 (2003), p.1481.

Google Scholar

[2] A. Y. T. Leung and S. G. Mao: J. Sound Vib. Vol. 183 (1995), p.475.

Google Scholar

[3] H. H. Yoo, R. R. Ryan and R. A. Scott: J. Sound Vib. Vol. 181 (1995), p.261.

Google Scholar

[4] J. Chung and H. H. Yoo: J. Sound Vib. Vol. 249 (2002), p.147.

Google Scholar

[5] P. Apiwattanalunggarn and C. Pierre: J. Vib. Control Vol. 9 (2003), p.235.

Google Scholar

[6] A. Y. T. Leung and S. G. Mao: Comput. Struct. Vol. 54 (1995), p.1135.

Google Scholar

[7] M. N. Hamdan and B. O. Al-Bedoor: J. Sound Vib. Vol. 242 (2001), p.839.

Google Scholar

[8] T.C. Wang, T. Nie and L. M. Zhang: J. Comput. Appl. Math. Vol. 231(2009), p.745.

Google Scholar

[9] Th. Monovasillis, Z. Kalogiratou and T. E. Sincos: Phys. Lett. A Vol. 372(2008), p.569.

Google Scholar

[10] A. EL Ouatouati and D. A. Johnson: Int. J. Numer. Meth. Engng. Vol. 46 (1999), p.1.

Google Scholar

[11] R. P. S. Han and S. G. Mao: IMechE, Proc Instn Mech Engrs, Part K. Vol. 215 (2001), p.75.

Google Scholar

[12] J. L. Escalona, H. A. Hussien and A. A. Shabana: J. Sound Vib. Vol. 214 (1998), p.833.

Google Scholar

[13] Y. Wu: Comput. Math. Appl. Vol. 15 (1988), p.1041.

Google Scholar

[14] R. I. Mclachlan and P. Atela: Nonlinearity Vol. 5 (1992), p.541.

Google Scholar

[15] N. Stander and E. Stein: Eng. Computation. Vol. 13 (1996), p.60.

Google Scholar

[16] J. Chung and G. M. Hulbert: J. Appl. Mech-T. ASME Vol. 60 (1993), p.371.

Google Scholar

[17] A. Yigit, R.A. Scott and A. G. Ulsoy: J. Sound Vib. Vol. 121 (1988), p.202.

Google Scholar

[18] Han, P. S. Ray and Z. C. Zhao. Int. J. Numer. Meth. Eng. Vol. 30 (1990), p.77.

Google Scholar